IDEAS home Printed from
   My bibliography  Save this article

Assessing the impact of the Nitrate Directive on farming systems using a bio-economic modelling chain


  • Belhouchette, Hatem
  • Louhichi, Kamel
  • Therond, Olivier
  • Mouratiadou, Ioanna
  • Wery, Jacques
  • Ittersum, Martin van
  • Flichman, Guillermo


Bio-economic models can be used to assess the impact of policy and environmental measures through economic and environmental indicators. Focusing on agricultural systems, farmers' decisions in terms of cropping systems and the associated crop management at field scale are essential in such studies. The objective of this paper is to present a study using a bio-economic model to assess the impact of the Nitrate Directive in the Midi-Pyrenees region (France) by analyzing, at the farm scale, farm income and three environmental indicators: nitrate leaching, erosion and water consumption. Two scenarios, the 2003 CAP reform (baseline scenario) and the Nitrate Directive (policy scenario), with a 2013 time horizon, were developed and compared for three representative arable farm types in the Midi-Pyrenees region. Different types of data characterizing the biophysical context in the region (soil, climate), the current cropping systems (rotation, crop management) and farm resources (irrigated land, labor) were collected to calibrate and run the models. Results showed that the implementation of the Nitrate Directive may not affect farm income. However, significant modifications to cropping systems and crop allocation to soil types were simulated. Contrary to expectations, nitrogen leaching at the farm scale did not change. Overall water consumption increased and soil erosion decreased due mainly to a modification in cropping patterns and management by soil type. This study provides an example of unanticipated effects of policy and trade-offs between environmental issues.

Suggested Citation

  • Belhouchette, Hatem & Louhichi, Kamel & Therond, Olivier & Mouratiadou, Ioanna & Wery, Jacques & Ittersum, Martin van & Flichman, Guillermo, 2011. "Assessing the impact of the Nitrate Directive on farming systems using a bio-economic modelling chain," Agricultural Systems, Elsevier, vol. 104(2), pages 135-145, February.
  • Handle: RePEc:eee:agisys:v:104:y:2011:i:2:p:135-145

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Just, Richard E & Antle, John M, 1990. "Interactions between Agricultural and Environmental Policies: A Conceptual Framework," American Economic Review, American Economic Association, vol. 80(2), pages 197-202, May.
    2. Britz, Wolfgang & Perez Dominguez, Ignacio & Zimmermann, Andrea & Heckelei, Thomas, 2007. "Definition of the CAPRI Core Modelling System and Interfaces with other Components of SEAMLESS-IF," Reports 9284, SEAMLESS: System for Environmental and Agricultural Modelling, Linking European Science and Society.
    3. Aubry, Christine & Paillat, Jean-Marie & Guerrin, Francois, 2006. "A conceptual representation of animal waste management at the farm scale: The case of the Reunion Island," Agricultural Systems, Elsevier, vol. 88(2-3), pages 294-315, June.
    4. Thomas Heckelei & Hendrik Wolff, 2003. "Estimation of constrained optimisation models for agricultural supply analysis based on generalised maximum entropy," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 30(1), pages 27-50, March.
    5. Barbier, B. & Bergeron, G., 1999. "Impact of policy interventions on land management in Honduras: results of a bioeconomic model," Agricultural Systems, Elsevier, vol. 60(1), pages 1-16, May.
    6. Dogliotti, S. & Rossing, W. A. H. & van Ittersum, M. K., 2004. "Systematic design and evaluation of crop rotations enhancing soil conservation, soil fertility and farm income: a case study for vegetable farms in South Uruguay," Agricultural Systems, Elsevier, vol. 80(3), pages 277-302, June.
    7. Louhichi, Kamel & Flichman, Guillermo & Blanco Fonseca, Maria, 2009. "A generic template for FSSIM," Reports 57463, SEAMLESS: System for Environmental and Agricultural Modelling, Linking European Science and Society.
    8. Waithaka, M.M. & Thornton, P.K. & Herrero, M. & Shepherd, K.D., 2006. "Bio-economic evaluation of farmers' perceptions of viable farms in western Kenya," Agricultural Systems, Elsevier, vol. 90(1-3), pages 243-271, October.
    9. Matthews, R. B. & Kropff, M. J. & Horie, T. & Bachelet, D., 1997. "Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation," Agricultural Systems, Elsevier, vol. 54(3), pages 399-425, July.
    10. van Ittersum, Martin K. & Ewert, Frank & Heckelei, Thomas & Wery, Jacques & Alkan Olsson, Johanna & Andersen, Erling & Bezlepkina, Irina & Brouwer, Floor & Donatelli, Marcello & Flichman, Guillermo & , 2008. "Integrated assessment of agricultural systems - A component-based framework for the European Union (SEAMLESS)," Agricultural Systems, Elsevier, vol. 96(1-3), pages 150-165, March.
    11. Quirino Paris & Richard E. Howitt, 1998. "An Analysis of Ill-Posed Production Problems Using Maximum Entropy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 124-138.
    12. Louhichi, Kamel & Kanellopoulos, Argyris & Janssen, Sander & Flichman, Guillermo & Blanco, Maria & Hengsdijk, Huib & Heckelei, Thomas & Berentsen, Paul & Lansink, Alfons Oude & Ittersum, Martin Van, 2010. "FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies," Agricultural Systems, Elsevier, vol. 103(8), pages 585-597, October.
    13. Debaeke, Philippe & Nolot, Jean-Marie & Raffaillac, Didier, 2006. "A rule-based method for the development of crop management systems applied to grain sorghum in south-western France," Agricultural Systems, Elsevier, vol. 90(1-3), pages 180-201, October.
    14. Kamel Louhichi & Guillermo Flichman & Slim Zekri, 1999. "Un modèle bio-économique pour analyser l'impact de la politique de conservation des eaux et du sol. [Le cas d'une exploitation agricole tunisienne]," Économie rurale, Programme National Persée, vol. 252(1), pages 55-64.
    15. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    16. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    17. Butt, Tanveer A. & Mccarl, Bruce A., 2005. "An analytical framework for making long -term projections of undernourishment: A case study for agriculture in Mali," Food Policy, Elsevier, vol. 30(4), pages 434-451, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. van Ittersum, Martin K. & Heckelei, Thomas & Oude Lansink, Alfons G.J.M. & Wolf, Joost & Kanellopoulos, Argyris & Britz, Wolfgang, 2011. "Methodological and empirical progress and challenges in integrated assessment of agricultural systems and policies," 122nd Seminar, February 17-18, 2011, Ancona, Italy 119329, European Association of Agricultural Economists.
    2. Humblot, Pierre & Jayet, Pierre-Alain & Petsakos, Athanasios, 2017. "Farm-level bio-economic modeling of water and nitrogen use: Calibrating yield response functions with limited data," Agricultural Systems, Elsevier, vol. 151(C), pages 47-60.
    3. Britz, Wolfgang & van Ittersum, Martin K. & Oude Lansink, Alfons G.J.M. & Heckelei, Thomas, 2012. "Tools for Integrated Assessment in Agriculture. State of the Art and Challenges," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), issue 2, August.
    4. Leclere, David & Jayet, Pierre-Alain & de Noblet-Ducoudre, Nathalie, 2011. "Short-term Farm Level Adaptations of EU15 Agricultural Supply to Climate Change," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114391, European Association of Agricultural Economists.
    5. Webber, Heidi & Gaiser, Thomas & Ewert, Frank, 2014. "What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa?," Agricultural Systems, Elsevier, vol. 127(C), pages 161-177.
    6. repec:eee:agisys:v:157:y:2017:i:c:p:316-329 is not listed on IDEAS
    7. Martin, G. & Duru, M. & Schellberg, J. & Ewert, F., 2012. "Simulations of plant productivity are affected by modelling approaches of farm management," Agricultural Systems, Elsevier, vol. 109(C), pages 25-34.
    8. Chopin, Pierre & Doré, Thierry & Guindé, Loïc & Blazy, Jean-Marc, 2015. "MOSAICA: A multi-scale bioeconomic model for the design and ex ante assessment of cropping system mosaics," Agricultural Systems, Elsevier, vol. 140(C), pages 26-39.
    9. Salmoral, Gloria & Garrido, Alberto, 2015. "The Common Agricultural Policy as a driver of water quality changes: the case of the Guadalquivir River Basin (southern Spain)," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), issue 2, August.
    10. repec:eee:agisys:v:159:y:2018:i:c:p:103-110 is not listed on IDEAS
    11. repec:eee:agisys:v:159:y:2018:i:c:p:111-125 is not listed on IDEAS
    12. Jeder, Houcine & Sghaier, Mongi & Louhichi, Kamel & Reidsma, Pytrik, 2014. "Bio-economic modelling to assess the impact of water pricing policies at the farm level in the Oum Zessar watershed, southern Tunisia," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 15(2), June.
    13. repec:grm:ecoyun:201712 is not listed on IDEAS
    14. Shirsath, Paresh B. & Aggarwal, P.K. & Thornton, P.K. & Dunnett, A., 2017. "Prioritizing climate-smart agricultural land use options at a regional scale," Agricultural Systems, Elsevier, vol. 151(C), pages 174-183.
    15. Chopin, Pierre & Blazy, Jean-Marc & Guindé, Loïc & Wery, Jacques & Doré, Thierry, 2017. "A framework for designing multi-functional agricultural landscapes: Application to Guadeloupe Island," Agricultural Systems, Elsevier, vol. 157(C), pages 316-329.
    16. Guillermo Flichman & Hatem Belhouchette & Adam M. Komarek & Sophie Drogue & James Hawkins & Roza Chenoune & Siwa Msangi, 2016. "Dynamic agricultural household bio-economic simulator (DAHBSIM) model description: biosight project technical report," Working Papers hal-01432629, HAL.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:104:y:2011:i:2:p:135-145. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.