IDEAS home Printed from https://ideas.repec.org/p/ags/aiea16/242316.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

How important are crop shares in managing risk for specialized arable farms? A panel estimation of a programming model for three European regions

Author

Listed:
  • Britz, Wolfgang
  • Arata, Linda

Abstract

We estimate a dual cost function together with farmers’ risk attitude in a programming model setup which allows for zero activity levels and not binding constraints. We use crop shares as decision variables in order to avoid scale bias and to shed light on farm risk management strategies. The model is estimated for three unbalanced panels of specialized arable farms observed for at least three consecutive years in Northern Italy, Cologne-Aachen region in Germany and the Grandes-Culture Region of France over the time period 1995-2008. Our estimated models show quite satisfactory fit with regard to crop shares and costs while results indicate that specialised arable farms from these regions use crop shares only marginally as a risk management instrument. The supply elasticities with respect to price show values in a reasonable range. The cost reducing effects of farm size measured in hectare is neglectable and, as expected, we find a positive correlation between farm size and the number of crops grown in a year.

Suggested Citation

  • Britz, Wolfgang & Arata, Linda, 2016. "How important are crop shares in managing risk for specialized arable farms? A panel estimation of a programming model for three European regions," 2016 Fifth AIEAA Congress, June 16-17, 2016, Bologna, Italy 242316, Italian Association of Agricultural and Applied Economics (AIEAA).
  • Handle: RePEc:ags:aiea16:242316
    DOI: 10.22004/ag.econ.242316
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/242316/files/AIEAA_2016_Britz_Arata.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.242316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rulon D. Pope & Richard E. Just, 1998. "Cost Function Estimation under Risk Aversion," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(2), pages 296-302.
    2. Alfons Oude Lansink, 1999. "Area Allocation Under Price Uncertainty on Dutch Arable Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 50(1), pages 93-105, January.
    3. Jansson, Torbjörn & Heckelei, Thomas & Gocht, Alexander & Basnet, Shyam Kumar & Zhang, Yinan & Neuenfeldt, Sebastian, 2014. "Analysing impacts of changing price variability with estimated farm risk-programming models," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182665, European Association of Agricultural Economists.
    4. Richard E. Just & Quinn Weninger, 1999. "Are Crop Yields Normally Distributed?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(2), pages 287-304.
    5. Phoebe Koundouri & Marita Laukkanen & Sami Myyrä & Céline Nauges, 2009. "The effects of EU agricultural policy changes on farmers' risk attitudes," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 36(1), pages 53-77, March.
    6. Thomas Heckelei & Hendrik Wolff, 2003. "Estimation of constrained optimisation models for agricultural supply analysis based on generalised maximum entropy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 30(1), pages 27-50, March.
    7. Chavas, Jean-Paul & Pope, Rulon, 1985. "Price uncertainty and competitive firm behavior: Testable hypotheses from expected utility maximization," Journal of Economics and Business, Elsevier, vol. 37(3), pages 223-235, August.
    8. Heckelei, Thomas & Britz, Wolfgang, 2000. "Positive Mathematical Programming with Multiple Data Points: A Cross-Sectional Estimation Procedure," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 57.
    9. Heckelei, Thomas & Britz, Wolfgang & Zhang, Yinan, 2012. "Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-16, April.
    10. Fabienne Femenia & Alexandre Gohin & Alain Carpentier, 2010. "The Decoupling of Farm Programs: Revisiting the Wealth Effect," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(3), pages 836-848.
    11. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    12. Petsakos, Athanasios & Rozakis, Stelios, 2015. "Calibration of agricultural risk programming models," European Journal of Operational Research, Elsevier, vol. 242(2), pages 536-545.
    13. Pierre Mérel & Santiago Bucaram, 2010. "Exact calibration of programming models of agricultural supply against exogenous supply elasticities," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(3), pages 395-418, September.
    14. Barry T. Coyle, 1999. "Risk Aversion and Yield Uncertainty in Duality Models of Production: A Mean-Variance Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(3), pages 553-567.
    15. Teresa Serra & David Zilberman & Barry K. Goodwin & Allen Featherstone, 2006. "Effects of decoupling on the mean and variability of output," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 33(3), pages 269-288, September.
    16. Severini, Simone & Cortignani, Raffaele, 2011. "Modeling farmer participation to a revenue insurance scheme by means of Positive Mathematical Programming," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 116001, European Association of Agricultural Economists.
    17. Barry T. Coyle, 1992. "Risk Aversion and Price Risk in Duality Models of Production: A Linear Mean-Variance Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(4), pages 849-859.
    18. Quirino Paris & Richard E. Howitt, 1998. "An Analysis of Ill-Posed Production Problems Using Maximum Entropy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 124-138.
    19. Rulon D. Pope & Jean-Paul Chavas, 1994. "Cost Functions Under Production Uncertainty," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(2), pages 196-204.
    20. Paolo Sckokai & Daniele Moro, 2006. "Modeling the Reforms of the Common Agricultural Policy for Arable Crops under Uncertainty," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 43-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    2. Wolfgang Britz & Linda Arata, 2019. "Econometric mathematical programming: an application to the estimation of costs and risk preferences at farm level," Agricultural Economics, International Association of Agricultural Economists, vol. 50(2), pages 191-206, March.
    3. Kamel Elouhichi & Maria Espinosa Goded & Pavel Ciaian & Angel Perni Llorente & Bouda Vosough Ahmadi & Liesbeth Colen & Sergio Gomez Y Paloma, 2018. "The EU-Wide Individual Farm Model for Common Agricultural Policy Analysis (IFM-CAP v.1): Economic Impacts of CAP Greening," JRC Research Reports JRC108693, Joint Research Centre.
    4. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    5. Kamel Louhichi & Pavel Ciaian & Maria Espinosa & Angel Perni & Sergio Gomez y Paloma, 2018. "Economic impacts of CAP greening: application of an EU-wide individual farm model for CAP analysis (IFM-CAP)," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(2), pages 205-238.
    6. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    7. Athanasios Petsakos & Stelios Rozakis, 2022. "Models and muddles: comment on ‘Calibration of agricultural risk programming models using positive mathematical programming’," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(3), pages 713-728, July.
    8. Petsakos, Athanasios & Rozakis, Stelios, 2015. "Calibration of agricultural risk programming models," European Journal of Operational Research, Elsevier, vol. 242(2), pages 536-545.
    9. Moro, Daniele & Sckokai, Paolo, 2013. "The impact of decoupled payments on farm choices: Conceptual and methodological challenges," Food Policy, Elsevier, vol. 41(C), pages 28-38.
    10. Heckelei, Thomas & Britz, Wolfgang & Zhang, Yinan, 2012. "Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-16, April.
    11. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Paloma, Sergio, 2015. "The Impact of Crop Diversification Measure: EU-wide Evidence Based on IFM-CAP Model," 2015 Conference, August 9-14, 2015, Milan, Italy 211542, International Association of Agricultural Economists.
    12. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Gomez y Paloma, Sergio, 2015. "EU-wide individual Farm Model for CAP Analysis (IFM-CAP): Application to Crop Diversification Policy," 2015 Conference, August 9-14, 2015, Milan, Italy 212155, International Association of Agricultural Economists.
    13. Basnet, Shyam Kumar & Jansson , Torbjorn & Heckelei, Thomas, 2021. "A Bayesian econometrics and risk programming approach for analysing the impact of decoupled payments in the European Union," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(03), January.
    14. Arfini, Filippo & Donati, Michele & Marongiu, Sonia & Cesaro, Luca, 2012. "Farm production costs estimation trough PMP Models: an application in three Italian Regions," 2012 First Congress, June 4-5, 2012, Trento, Italy 124117, Italian Association of Agricultural and Applied Economics (AIEAA).
    15. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Gomez y Paloma, Sergio, 2015. "Farm-level economic impacts of EU-CAP greening measures," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205309, Agricultural and Applied Economics Association.
    16. Carpentier, Alain & Letort, Elodie, 2009. "Modeling acreage decisions within the multinomial Logit framework," Working Papers 211011, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    17. Jansson, Torbjörn & Heckelei, Thomas & Gocht, Alexander & Basnet, Shyam Kumar & Zhang, Yinan & Neuenfeldt, Sebastian, 2014. "Analysing impacts of changing price variability with estimated farm risk-programming models," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182665, European Association of Agricultural Economists.
    18. Kotakou, Christina A. & Katranidis, Stelios D., 2010. "Evaluating the Effects of Decoupled Payments under Output and Price Uncertainty," 84th Annual Conference, March 29-31, 2010, Edinburgh, Scotland 91753, Agricultural Economics Society.
    19. Just, Richard E., 2000. "Some Guiding Principles for Empirical Production Research in Agriculture," Agricultural and Resource Economics Review, Cambridge University Press, vol. 29(2), pages 138-158, October.
    20. Philippe Bontems & Celine Nauges, 2019. "Production choices with water markets and risk aversion: the role of initial allocations and forward trading," Post-Print hal-02349932, HAL.

    More about this item

    Keywords

    Crop Production/Industries; Production Economics;

    JEL classification:

    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aiea16:242316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aieaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.