IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i12p1785-1791.html
   My bibliography  Save this article

Modeling farm-level adoption of deficit irrigation using Positive Mathematical Programming

Author

Listed:
  • Cortignani, Raffaele
  • Severini, Simone

Abstract

Irrigated agriculture in the European Union (EU) is currently adapting to new conditions including the principle of the full recovery of water service costs, the reduction of water availability and the increasing variability in the prices of agricultural products. This has fostered an increasing number of economic analyses to investigate farmers' behaviour by means of mathematical programming techniques including Positive Mathematical Programming (PMP) models. However PMP models generally consider only activities observed in the reference period even if, under new policies and market conditions, farmers can adopt irrigation techniques they have not used previously. In particular, under increasing water costs or decreasing water availability, farmers can introduce Deficit Irrigation (DI) techniques that might not have been profitable earlier. We propose an extension of the PMP approach to include DI techniques not observed in the reference period. These alternative techniques are identified by means of a crop growth model developed by the FAO. We apply our methodology to a Mediterranean area using three sets of simulations involving: increases in water costs, reductions in water availability, and changes in the prices of the products obtained from irrigated crops. Lacking observations of alternative irrigation techniques, our approach captures potential technology adjustments and assesses the impact of changes in water policy and market conditions in a better way. Simulation results show that increasing water costs do not motivate adoption of DI techniques. Rather, farmers are induced to save water by switching from full irrigation to deficit irrigation when water availability is reduced or the prices of irrigated crops are increased.

Suggested Citation

  • Cortignani, Raffaele & Severini, Simone, 2009. "Modeling farm-level adoption of deficit irrigation using Positive Mathematical Programming," Agricultural Water Management, Elsevier, vol. 96(12), pages 1785-1791, December.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:12:p:1785-1791
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00212-1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heckelei, Thomas & Britz, Wolfgang, 2000. "Positive Mathematical Programming with Multiple Data Points: A Cross-Sectional Estimation Procedure," Cahiers d'Economie et de Sociologie Rurales (CESR), INRA (French National Institute for Agricultural Research), vol. 57.
    2. Blanco, Maria & Cortignani, Raffaele & Severini, Simone, 2008. "Evaluating Changes in Cropping Patterns due to the 2003 CAP Reform. An Ex-post Analysis of Different PMP Approaches Considering New Activities," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6674, European Association of Agricultural Economists.
    3. Berbel, J. & Gomez-Limon, J. A., 2000. "The impact of water-pricing policy in Spain: an analysis of three irrigated areas," Agricultural Water Management, Elsevier, vol. 43(2), pages 219-238, March.
    4. Severini, Simone & Cortignani, Raffaele, 2008. "Introducing deficit irrigation crop techniques derived by crop growth models into a Positive Mathematical Programming model," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44010, European Association of Agricultural Economists.
    5. Ottmar Röhm & Stephan Dabbert, 2003. "Integrating Agri-Environmental Programs into Regional Production Models: An Extension of Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 254-265.
    6. Joan Pujol & Meri Raggi & Davide Viaggi, 2006. "The potential impact of markets for irrigation water in Italy and Spain: a comparison of two study areas ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(3), pages 361-380, September.
    7. Heckelei, Thomas & Britz, Wolfgang, 2005. "Models Based on Positive Mathematical Programming: State of the Art and Further Extensions," 89th Seminar, February 2-5, 2005, Parma, Italy 234607, European Association of Agricultural Economists.
    8. Farré, I. & Faci, J.-M., 2009. "Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 383-394, March.
    9. Iglesias, Eva & Garrido, Alberto & Gomez-Ramos, Almudena, 2003. "Evaluation of drought management in irrigated areas," Agricultural Economics, Blackwell, vol. 29(2), pages 211-229, October.
    10. English, Marshall & Raja, Syed Navaid, 1996. "Perspectives on deficit irrigation," Agricultural Water Management, Elsevier, vol. 32(1), pages 1-14, November.
    11. Bartolini, Fabio & Bazzani, Guido Maria & Gallerani, Vittorio & Raggi, Meri & Viaggi, Davide, 2005. "Water Policy and Sustainability of Irrigated Farming Systems in Italy," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24518, European Association of Agricultural Economists.
    12. Iglesias, Eva & Garrido, Alberto & Gomez-Ramos, Almudena, 2003. "Evaluation of drought management in irrigated areas," Agricultural Economics of Agricultural Economists, International Association of Agricultural Economists, vol. 29(2), October.
    13. Reca, Juan & Roldan, Jose & Alcaide, Miguel & Lopez, Rafael & Camacho, Emilio, 2001. "Optimisation model for water allocation in deficit irrigation systems: I. Description of the model," Agricultural Water Management, Elsevier, vol. 48(2), pages 103-116, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Humblot, Pierre & Jayet, Pierre-Alain & Petsakos, Athanasios, 2017. "Farm-level bio-economic modeling of water and nitrogen use: Calibrating yield response functions with limited data," Agricultural Systems, Elsevier, vol. 151(C), pages 47-60.
    2. Ali, Md Kamar & Klein, K.K., 2014. "Implications of current and alternative water allocation policies in the Bow River Sub Basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 133(C), pages 1-11.
    3. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Paloma, Sergio, 2015. "The Impact of Crop Diversification Measure: EU-wide Evidence Based on IFM-CAP Model," 2015 Conference, August 9-14, 2015, Milan, Italy 211542, International Association of Agricultural Economists.
    4. Qureshi, M. Ejaz & Ahmad, Mobin-ud-Din & Whitten, Stuart M. & Kirby, Mac, 2014. "A multi-period positive mathematical programming approach for assessing economic impact of drought in the Murray–Darling Basin, Australia," Economic Modelling, Elsevier, vol. 39(C), pages 293-304.
    5. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Gomez y Paloma, Sergio, 2015. "Farm-level economic impacts of EU-CAP greening measures," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205309, Agricultural and Applied Economics Association;Western Agricultural Economics Association.
    6. Salvador, R. & Latorre, B. & Paniagua, P. & Playán, E., 2011. "Farmers’ scheduling patterns in on-demand pressurized irrigation," Agricultural Water Management, Elsevier, vol. 102(1), pages 86-96.
    7. Yah, Tingting & Wang, Jinxia & Huang, Jikun, 2015. "Urbanization, Agricultural Water Use, and Regional and National Crop Production in China," 2015 Conference, August 9-14, 2015, Milan, Italy 211882, International Association of Agricultural Economists.
    8. Alcon, Francisco & Tapsuwan, Sorada & Martínez-Paz, José M. & Brouwer, Roy & de Miguel, María D., 2014. "Forecasting deficit irrigation adoption using a mixed stakeholder assessment methodology," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 183-193.
    9. repec:gam:jsusta:v:9:y:2017:i:9:p:1515-:d:109866 is not listed on IDEAS
    10. Ali, Md Kamar & Klein, Kurt K., 2013. "Implications of Current and Alternative Water Allocation Policies in the Bow River Sub Basin of Southern Alberta," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149734, Agricultural and Applied Economics Association.
    11. repec:eee:resene:v:48:y:2017:i:c:p:68-82 is not listed on IDEAS
    12. Rianne Duinen & Tatiana Filatova & Wander Jager & Anne Veen, 2016. "Going beyond perfect rationality: drought risk, economic choices and the influence of social networks," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 57(2), pages 335-369, November.
    13. Roberto Ponce & María Blanco & Carlo Giupponi, 2014. "Climate Change, Water Scarcity in Agriculture and the Country-Level Economic Impacts. A Multimarket Analysis," Serie Working Papers 02, Universidad del Desarrollo, School of Business and Economics, revised Nov 2014.
    14. Donati, Michele & Bodini, Diego & Arfini, Filippo & Zezza, Annalisa, 0. "An integrated PMP model to assess the development of agro-energy crops and the effect on water requirements," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), issue 3.
    15. He, Lixia & Horbulyk, Theodore M. & Ali, Md. Kamar & Le Roy, Danny G. & Klein, K.K., 2012. "Proportional water sharing vs. seniority-based allocation in the Bow River basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 104(C), pages 21-31.
    16. D.-A. An-Vo & S. Mushtaq & T. Nguyen-Ky & J. Bundschuh & T. Tran-Cong & T. Maraseni & K. Reardon-Smith, 2015. "Nonlinear Optimisation Using Production Functions to Estimate Economic Benefit of Conjunctive Water Use for Multicrop Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2153-2170, May.
    17. Gohar, Abdelaziz A. & Cashman, Adrian, 2016. "A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare," Agricultural Systems, Elsevier, vol. 147(C), pages 51-64.
    18. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Gomez y Paloma, Sergio, 2015. "EU-wide individual Farm Model for CAP Analysis (IFM-CAP): Application to Crop Diversification Policy," 2015 Conference, August 9-14, 2015, Milan, Italy 212155, International Association of Agricultural Economists.
    19. Heckelei, Thomas & Britz, Wolfgang & Zhang, Yinan, 2012. "Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), issue 1, April.
    20. Yan, Tingting & Wang, Jinxia & Huang, Jikun, 2015. "Urbanization, agricultural water use, and regional and national crop production in China," Ecological Modelling, Elsevier, vol. 318(C), pages 226-235.
    21. repec:wsi:wepxxx:v:03:y:2017:i:01:n:s2382624x17500011 is not listed on IDEAS
    22. repec:eee:agiwat:v:199:y:2018:i:c:p:148-156 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:12:p:1785-1791. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/agwat .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.