IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v257y2021ics0378377421004224.html
   My bibliography  Save this article

Priority water rights. Are they useful for improving water-use efficiency at the irrigation district level?

Author

Listed:
  • Gómez-Limón, José A.
  • Gutiérrez-Martín, Carlos
  • Montilla-López, Nazaret M.

Abstract

This paper examines the effectiveness of reforming water rights regimes in the agricultural sector by replacing allocation procedures based on the proportional rule with the implementation of a priority rule that establishes security-differentiated water rights. The main objective is to assess whether this change improves the economic efficiency of water allocation at the irrigation district level, particularly during cyclical scarcity events. To this end, a Positive Mathematical Programming model is built to simulate the performance of the proposed reform in an irrigation district in southern Spain. The results show that the efficiency gains brought about by this change are very small, which casts doubt on its ability to improve water-use efficiency in the agricultural sector at the local level (i.e., irrigation district) under current local climate and water availability conditions. In any case, further research is needed to assess the suitability of this change in allocations rules at basin scale with greater farm heterogeneity, especially given the likelihood of more frequent, more intense droughts due to climate change.

Suggested Citation

  • Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Montilla-López, Nazaret M., 2021. "Priority water rights. Are they useful for improving water-use efficiency at the irrigation district level?," Agricultural Water Management, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:agiwat:v:257:y:2021:i:c:s0378377421004224
    DOI: 10.1016/j.agwat.2021.107145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421004224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mallawaarachchi, Thilak & Auricht, Christopher & Loch, Adam & Adamson, David & Quiggin, John, 2020. "Water allocation in Australia’s Murray–Darling Basin: Managing change under heightened uncertainty," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 345-369.
    2. Guerrero-Baena, M. Dolores & Villanueva, Anastasio J. & Gómez-Limón, José A. & Glenk, Klaus, 2019. "Willingness to pay for improved irrigation water supply reliability: An approach based on probability density functions," Agricultural Water Management, Elsevier, vol. 217(C), pages 11-22.
    3. Montilla-López, Nazaret M. & Gómez-Limón, José A. & Gutiérrez-Martín, Carlos, 2018. "Sharing a river: Potential performance of a water bank for reallocating irrigation water," Agricultural Water Management, Elsevier, vol. 200(C), pages 47-59.
    4. John Freebairn & John Quiggin, 2006. "Water rights for variable supplies ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(3), pages 295-312, September.
    5. Heckelei, Thomas & Britz, Wolfgang, 2000. "Positive Mathematical Programming with Multiple Data Points: A Cross-Sectional Estimation Procedure," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 57.
    6. Heckelei, Thomas & Britz, Wolfgang & Zhang, Yinan, 2012. "Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-16, April.
    7. A. Loch & C. D. Pérez-Blanco & E. Carmody & V. Felbab-Brown & D. Adamson & C. Seidl, 2020. "Grand theft water and the calculus of compliance," Nature Sustainability, Nature, vol. 3(12), pages 1012-1018, December.
    8. Marianne Lefebvre & Lata Gangadharan & Sophie Thoyer, 2012. "Do Security-Differentiated Water Rights Improve the Performance of Water Markets?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1113-1135.
    9. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    10. Heckelei, Thomas & Britz, Wolfgang, 2005. "Models Based on Positive Mathematical Programming: State of the Art and Further Extensions," 89th Seminar, February 2-5, 2005, Parma, Italy 234607, European Association of Agricultural Economists.
    11. Javier Alarcón & Alberto Garrido & Luis Juana, 2014. "Managing Irrigation Water Shortage: a Comparison Between Five Allocation Rules Based on Crop Benefit Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2315-2329, June.
    12. Bruno Henry Frahan & Jeroen Buysse & Philippe Polomé & Bruno Fernagut & Olivier Harmignie & Ludwig Lauwers & Guido Huylenbroeck & Jef Meensel, 2007. "Positive Mathematical Programming for Agricultural and Environmental Policy Analysis: Review and Practice," International Series in Operations Research & Management Science, in: Andres Weintraub & Carlos Romero & Trond Bjørndal & Rafael Epstein & Jaime Miranda (ed.), Handbook Of Operations Research In Natural Resources, chapter 0, pages 129-154, Springer.
    13. Marshall, Graham R., 2013. "Transaction Costs, Collective Action And Adaptation In Managing Social-Ecological Systems," 2013 Conference (57th), February 5-8, 2013, Sydney, Australia 152166, Australian Agricultural and Resource Economics Society.
    14. M. D. Young & J. C. McColl, 2003. "Robust Reform: The Case for a New Water Entitlement System for Australia," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 36(2), pages 225-234, June.
    15. Dolores Rey & Alberto Garrido & Javier Calatrava, 2016. "Comparison of Different Water Supply Risk Management Tools for Irrigators: Option Contracts and Insurance," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(2), pages 415-439, October.
    16. McCann, Laura, 2013. "Transaction costs and environmental policy design," Ecological Economics, Elsevier, vol. 88(C), pages 253-262.
    17. Marianne Lefebvre & Lata Gangadharan & Sophie Thoyer, 2012. "Do Security-Differentiated Water Rights Improve the Performance of Water Markets?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1113-1135.
    18. Bjornlund, Henning, 2003. "Farmer participation in markets for temporary and permanent water in southeastern Australia," Agricultural Water Management, Elsevier, vol. 63(1), pages 57-76, November.
    19. Alfonso Expósito & Julio Berbel, 2019. "Drivers of Irrigation Water Productivity and Basin Closure Process: Analysis of the Guadalquivir River Basin (Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1439-1450, March.
    20. Dan Rigby & Francisco Alcon & Michael Burton, 2010. "Supply uncertainty and the economic value of irrigation water," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(1), pages 97-117, March.
    21. Pierre Mérel & Richard Howitt, 2014. "Theory and Application of Positive Mathematical Programming in Agriculture and the Environment," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 451-470, October.
    22. Marshall, Graham R., 2013. "Transaction costs, collective action and adaptation in managing complex social–ecological systems," Ecological Economics, Elsevier, vol. 88(C), pages 185-194.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Gutiérrez-Martín & José A. Gómez-Limón & Nazaret M. Montilla-López, 2022. "Priority Water Rights for Irrigation at the River Basin Level. Do They Improve Economic Efficiency During Drought Periods?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3737-3758, August.
    2. Guerrero-Baena, M. Dolores & Villanueva, Anastasio J. & Gómez-Limón, José A. & Glenk, Klaus, 2019. "Willingness to pay for improved irrigation water supply reliability: An approach based on probability density functions," Agricultural Water Management, Elsevier, vol. 217(C), pages 11-22.
    3. Pérez-Blanco, C.D. & Gutiérrez-Martín, C., 2017. "Buy me a river: Use of multi-attribute non-linear utility functions to address overcompensation in agricultural water buyback," Agricultural Water Management, Elsevier, vol. 190(C), pages 6-20.
    4. Umed Temurshoev & Marian Mraz & Luis Delgado Sancho & Peter Eder, 2015. "EU Petroleum Refining Fitness Check: OURSE Modelling and Results," JRC Research Reports JRC96207, Joint Research Centre.
    5. Umed Temurshoev & Fréderic Lantz, 2016. "Long-term petroleum product supply analysis through a robust modelling approach," Working Papers 2016-003, Universidad Loyola Andalucía, Department of Economics.
    6. Lee, Hwarang & Eom, Jiyong & Cho, Cheolhung & Koo, Yoonmo, 2019. "A bottom-up model of industrial energy system with positive mathematical programming," Energy, Elsevier, vol. 173(C), pages 679-690.
    7. Siwa Msangi & Sarah Ann Cline, 2016. "Improving Groundwater Management for Indian Agriculture: Assessing Tradeoffs Across Policy Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-33, September.
    8. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    9. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    10. Doole, Graeme J. & Marsh, Dan K., 2014. "Use of positive mathematical programming invalidates the application of the NZFARM model: Response to Daigneault et al. (2014)," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(2), April.
    11. Kamel Elouhichi & Pascal Tillie & Aymeric Ricome & Sergio Gomez-Y-Paloma, 2020. "Modelling Farm-household Livelihoods in Developing Economies: Insights from three country case studies using LSMS-ISA data," JRC Research Reports JRC118822, Joint Research Centre.
    12. Doole, Graeme J. & Marsh, Dan K., 2014. "Methodological limitations in the evaluation of policies to reduce nitrate leaching from New Zealand agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(1), January.
    13. Gómez-Limón, José A., 2020. "Hydrological drought insurance for irrigated agriculture in southern Spain," Agricultural Water Management, Elsevier, vol. 240(C).
    14. Cortignani, Raffaele & Severini, Simone, 2009. "Modeling farm-level adoption of deficit irrigation using Positive Mathematical Programming," Agricultural Water Management, Elsevier, vol. 96(12), pages 1785-1791, December.
    15. Kamel Elouhichi & Maria Espinosa Goded & Pavel Ciaian & Angel Perni Llorente & Bouda Vosough Ahmadi & Liesbeth Colen & Sergio Gomez Y Paloma, 2018. "The EU-Wide Individual Farm Model for Common Agricultural Policy Analysis (IFM-CAP v.1): Economic Impacts of CAP Greening," JRC Research Reports JRC108693, Joint Research Centre.
    16. Kamel Louhichi & Pascal Tillie & Aymeric Ricome & Sergio Gomez y Paloma, 2020. "Modelling Farm-household Livelihoods in Developing Economies Insights from three country case studies using LSMS-ISA data [Modélisation des moyens de subsistance des ménages agricoles dans les écon," Post-Print hal-02544905, HAL.
    17. C. D. Pérez-Blanco & E. E. Koks & E. Calliari & J. Mysiak, 2018. "Economic Impacts of Irrigation-Constrained Agriculture in the Lower Po Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-38, January.
    18. Garrick, Dustin & Whitten, Stuart M. & Coggan, Anthea, 2013. "Understanding the evolution and performance of water markets and allocation policy: A transaction costs analysis framework," Ecological Economics, Elsevier, vol. 88(C), pages 195-205.
    19. He, Lixia & Horbulyk, Theodore M. & Ali, Md. Kamar & Le Roy, Danny G. & Klein, K.K., 2012. "Proportional water sharing vs. seniority-based allocation in the Bow River basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 104(C), pages 21-31.
    20. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Paloma, Sergio, 2015. "The Impact of Crop Diversification Measure: EU-wide Evidence Based on IFM-CAP Model," 2015 Conference, August 9-14, 2015, Milan, Italy 211542, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:257:y:2021:i:c:s0378377421004224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.