IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Dynamics of Trade-by-Trade Price Movements: Decomposition and Models"

by Tina Hviid Rydberg & Neil Shephard

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as
in new window


  1. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
  2. Siem Jan Koopman & Rutger Lit & Andre Lucas, 2015. "Intraday Stochastic Volatility in Discrete Price Changes: the Dynamic Skellam Model," Tinbergen Institute Discussion Papers 15-076/IV/DSF94, Tinbergen Institute.
  3. Ishida, I. & McAleer, M.J. & Oya, K., 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 VIX," Econometric Institute Research Papers EI 2011-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  4. Jaehun Chung & Yongmiao Hong, 2013. "Model-Free Evaluation of Directional Predictability in Foreign Exchange," WISE Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
  5. Henri Nyberg, 2010. "Testing an autoregressive structure in binary time series models," Economics Bulletin, AccessEcon, vol. 30(2), pages 1460-1473.
  6. Enrico Scalas, 2005. "Five Years of Continuous-time Random Walks in Econophysics," Finance 0501005, EconWPA.
  7. McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
  8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
  9. Drew Creal & Siem Jan Koopman & André Lucas, 2008. "A General Framework for Observation Driven Time-Varying Parameter Models," Tinbergen Institute Discussion Papers 08-108/4, Tinbergen Institute.
  10. Jaehun Chung & Yongmiao Hong, 2007. "Model-free evaluation of directional predictability in foreign exchange markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 855-889.
  11. Igor Kheifets & Carlos Velasco, 2012. "Model Adequacy Checks for Discrete Choice Dynamic Models," Working Papers w0170, Center for Economic and Financial Research (CEFIR).
  12. Dionne, Georges & Zhou, Xiaozhou, 2016. "The Dynamics of Ex-ante High-Frequency Liquidity: An Empirical Analysis," Working Papers 15-5, HEC Montreal, Canada Research Chair in Risk Management.
  13. Heikki Kauppi, 2008. "Yield-Curve Based Probit Models for Forecasting U.S. Recessions: Stability and Dynamics," Discussion Papers 31, Aboa Centre for Economics.
  14. Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2013. "Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 12(1), pages 89-121, December.
  15. Isao Ishida, 2011. "Estimating the leverage parameter of continuous-time stochastic volatility models using high frequency S&P 500 and VIX," Managerial Finance, Emerald Group Publishing, vol. 37(11), pages 1048-1067, September.
  16. Jonathan Wright, 2002. "Log-Periodogram Estimation Of Long Memory Volatility Dependencies With Conditionally Heavy Tailed Returns," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 397-417.
  17. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
  18. Nyberg, Henri & Pönkä, Harri, 2016. "International sign predictability of stock returns: The role of the United States," Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
  19. Stanislav Anatolyev & Natalia Kryzhanovskaya, 2009. "Directional Prediction of Returns under Asymmetric Loss: Direct and Indirect Approaches," Working Papers w0136, Center for Economic and Financial Research (CEFIR).
  20. Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006. "Bayesian analysis of the stochastic conditional duration model," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
  21. Ginker, Tim & Lieberman, Offer, 2017. "Robustness of binary choice models to conditional heteroscedasticity," Economics Letters, Elsevier, vol. 150(C), pages 130-134.
  22. Harri Pönkä, 2017. "Predicting the direction of US stock markets using industry returns," Empirical Economics, Springer, vol. 52(4), pages 1451-1480, June.
  23. Ng, Eric C.Y., 2012. "Forecasting US recessions with various risk factors and dynamic probit models," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 112-125.
  24. Francisco Blasques & Siem Jan Koopman & Katarzyna Lasak & André Lucas, 2015. "In-Sample Bounds for Time-Varying Parameters of Observation Driven Models," Tinbergen Institute Discussion Papers 15-027/III, Tinbergen Institute, revised 07 Sep 2015.
  25. Mauricio Junca & Rafael Serrano, 2014. "Utility maximization in pure-jump models driven by marked point processes and nonlinear wealth dynamics," Papers 1411.1103, arXiv.org, revised Sep 2015.
  26. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
  27. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
  28. Roman Liesenfeld & Ingmar Nolte & Winfried Pohlmeier, 2006. "Modelling financial transaction price movements: a dynamic integer count data model," Empirical Economics, Springer, vol. 30(4), pages 795-825, January.
  29. Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2012. "Stationarity and Ergodicity of Univariate Generalized Autoregressive Score Processes," Tinbergen Institute Discussion Papers 12-059/4, Tinbergen Institute.
  30. Katarzyna Bień-Barkowska, 2012. "A Bivariate Copula-based Model for a Mixed Binary-Continuous Distribution: A Time Series Approach," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 4(2), pages 117-142, June.
  31. Nyberg, Henri, 2013. "Predicting bear and bull stock markets with dynamic binary time series models," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3351-3363.
  32. Kömm, Holger & Küsters, Ulrich, 2015. "Forecasting zero-inflated price changes with a Markov switching mixture model for autoregressive and heteroscedastic time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 598-608.
  33. Henrik Amilon, 2002. "A Score Test for Discreteness in GARCH Models," Research Paper Series 76, Quantitative Finance Research Centre, University of Technology, Sydney.
  34. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
  35. Sylwia Nowak, 2008. "How Do Public Announcements Affect The Frequency Of Trading In U.S. Airline Stocks?," CAMA Working Papers 2008-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  36. Linton, O. & Whang, Yoon-Jae, 2007. "The quantilogram: With an application to evaluating directional predictability," Journal of Econometrics, Elsevier, vol. 141(1), pages 250-282, November.
  37. Ito, Ryoko, 2013. "Modeling Dynamic Diurnal Patterns in High-Frequency Financial Data," Cambridge Working Papers in Economics 1315, Faculty of Economics, University of Cambridge.
  38. Amilon, Henrik, 2003. "GARCH estimation and discrete stock prices: an application to low-priced Australian stocks," Economics Letters, Elsevier, vol. 81(2), pages 215-222, November.
  39. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
  40. Wing Lon Ng, 2010. "Dynamic Order Submission And Herding Behavior In Electronic Trading," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(1), pages 27-43.
  41. Siem Jan Koopman & Rutger Lit & André Lucas, 2015. "Intraday Stock Price Dependence using Dynamic Discrete Copula Distributions," Tinbergen Institute Discussion Papers 15-037/III/DSF90, Tinbergen Institute.
  42. Sucarrat, Genaro & Grønneberg, Steffen, 2016. "Models of Financial Return With Time-Varying Zero Probability," MPRA Paper 68931, University Library of Munich, Germany.
  43. Drescher, Daniel, 2005. "Alternative distributions for observation driven count series models," Economics Working Papers 2005,11, Christian-Albrechts-University of Kiel, Department of Economics.
  44. Anatolyev Stanislav, 2009. "Multi-Market Direction-of-Change Modeling Using Dependence Ratios," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.
  45. Jung, Robert & Kukuk, Martin & Liesenfeld, Roman, 2005. "Time Series of Count Data : Modelling and Estimation," Economics Working Papers 2005,08, Christian-Albrechts-University of Kiel, Department of Economics.
  46. Jondeau, Eric & Lahaye, Jérôme & Rockinger, Michael, 2015. "Estimating the price impact of trades in a high-frequency microstructure model with jumps," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 205-224.
  47. Nyberg, Henri, 2010. "QR-GARCH-M Model for Risk-Return Tradeoff in U.S. Stock Returns and Business Cycles," MPRA Paper 23724, University Library of Munich, Germany.
  48. Axel Groß‐KlußMann & Nikolaus Hautsch, 2013. "Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
  49. Istvan Barra & Siem Jan Koopman, 2016. "Bayesian Dynamic Modeling of High-Frequency Integer Price Changes," Tinbergen Institute Discussion Papers 16-028/III, Tinbergen Institute.
  50. Winfried Pohlmeier & Roman Liesenfeld, 2003. "A Dynamic Integer Count Data Model for Financial Transaction Prices," CoFE Discussion Paper 03-03, Center of Finance and Econometrics, University of Konstanz.
  51. Fokianos, Konstantinos & Moysiadis, Theodoros, 2017. "Binary time series models driven by a latent process," Econometrics and Statistics, Elsevier, vol. 2(C), pages 117-130.
  52. Blasques, Francisco & Koopman, Siem Jan & Łasak, Katarzyna & Lucas, André, 2016. "In-sample confidence bands and out-of-sample forecast bands for time-varying parameters in observation-driven models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 875-887.
  53. repec:wyi:journl:002068 is not listed on IDEAS
  54. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
  55. Katarzyna Bien & Ingmar Nolte & Winfried Pohlmeier, 2006. "Estimating liquidity using information on the multivariate trading process," Working Papers 10, Department of Applied Econometrics, Warsaw School of Economics.
  56. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
  57. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
  58. Luis H. R. Alvarez E. & Paavo Salminen, 2016. "Timing in the Presence of Directional Predictability: Optimal Stopping of Skew Brownian Motion," Papers 1608.04537, arXiv.org.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.