IDEAS home Printed from https://ideas.repec.org/p/kyo/wpaper/759.html

Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 and VIX

Author

Listed:
  • Isao Ishida

    (Center for the Study of Finance and Insurance, Osaka University)

  • Michael McAleer

    (Erasmus University Rotterdam, Tinbergen Institute, The Netherlands, and Institute of Economic Research, Kyoto University)

  • Kosuke Oya

    (Graduate School of Economics and Center for the Study of Finance and Insurance, Osaka University)

Abstract

This paper proposes a new method for estimating continuous-time stochastic volatility (SV) models for the S&P 500 stock index process using intraday high-frequency observations of both the S&P 500 index and the Chicago Board of Exchange (CBOE) implied (or expected) volatility index (VIX). Intraday high-frequency observations data have become readily available for an increasing number of financial assets and their derivatives in recent years, but it is well known that attempts to estimate the parameters of popular continuous-time models can lead to nonsensical estimates due to severe intraday seasonality. A primary purpose of the paper is to estimate the leverage parameter, Ï , that is, the correlation between the two Brownian motions driving the diffusive components of the price process and its spot variance process, respectively. We show that, under the special case of Heston's (1993) square-root SV model without measurement errors, the "realized leverage", or the realized covariation of the price and VIX processes divided by the product of the realized volatilities of the two processes, converges to Ï in probability as the time intervals between observations shrink to zero, even if the length of the whole sample period is fixed. Finite sample simulation results show that the proposed estimator delivers accurate estimates of the leverage parameter, unlike existing methods.

Suggested Citation

  • Isao Ishida & Michael McAleer & Kosuke Oya, 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 and VIX," KIER Working Papers 759, Kyoto University, Institute of Economic Research.
  • Handle: RePEc:kyo:wpaper:759
    as

    Download full text from publisher

    File URL: http://www.kier.kyoto-u.ac.jp/DP/DP759.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Chia-Lin & Jimenez-Martin, Juan-Angel & McAleer, Michael & Amaral, Teodosio Perez, 2013. "The rise and fall of S&P500 variance futures," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 151-167.
    2. David E. Allen & Michael McAleer & Robert Powell & Abhay K. Singh, 2013. "A Non-Parametric and Entropy Based Analysis of the Relationship between the VIX and S&P 500," JRFM, MDPI, vol. 6(1), pages 1-25, October.
    3. Shou-Lei Wang & Yu-Fei Yang & Yu-Hua Zeng, 2014. "The Adjoint Method for the Inverse Problem of Option Pricing," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-7, March.
    4. Gonzalez-Perez, Maria T., 2015. "Model-free volatility indexes in the financial literature: A review," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 141-159.
    5. Bregantini, Daniele, 2013. "Moment-based estimation of stochastic volatility," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4755-4764.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kyo:wpaper:759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Makoto Watanabe (email available below). General contact details of provider: https://edirc.repec.org/data/iekyojp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.