IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v58y2016icp323-338.html
   My bibliography  Save this article

International sign predictability of stock returns: The role of the United States

Author

Listed:
  • Nyberg, Henri
  • Pönkä, Harri

Abstract

We study the directional predictability of monthly excess stock market returns in the U.S. and ten other markets using univariate and bivariate binary response models. We introduce a new bivariate (two-equation) probit model that allows us to examine the benefits of predicting the signs of returns jointly, focusing on the predictive power originating from the U.S. to foreign markets. Our in-sample and out-of-sample forecasting results indicate superior predictive performance of the new model over competing univariate binary response models, and conventional predictive regressions, by statistical measures and market timing performance. This highlights the importance of predictive information from the U.S. to the other markets providing also practical improvement in investors' market timing decisions.

Suggested Citation

  • Nyberg, Henri & Pönkä, Harri, 2016. "International sign predictability of stock returns: The role of the United States," Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
  • Handle: RePEc:eee:ecmode:v:58:y:2016:i:c:p:323-338
    DOI: 10.1016/j.econmod.2016.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999316301766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2016.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pönkä, Harri, 2016. "Real oil prices and the international sign predictability of stock returns," Finance Research Letters, Elsevier, vol. 17(C), pages 79-87.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Fengler, Matthias R. & Gisler, Katja I.M., 2015. "A variance spillover analysis without covariances: What do we miss?," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 174-195.
    4. Rizova, Savina, 2013. "Trade momentum," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 258-293.
    5. Buncic, Daniel & Gisler, Katja I.M., 2016. "Global equity market volatility spillovers: A broader role for the United States," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1317-1339.
    6. de Jong, Robert M. & Woutersen, Tiemen, 2011. "Dynamic Time Series Binary Choice," Econometric Theory, Cambridge University Press, vol. 27(4), pages 673-702, August.
    7. Hong, Harrison & Torous, Walter & Valkanov, Rossen, 2007. "Do industries lead stock markets?," Journal of Financial Economics, Elsevier, vol. 83(2), pages 367-396, February.
    8. Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014. "Forecasting US recessions: The role of sentiment," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
    9. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    10. Joakim Westerlund & Paresh Narayan, 2015. "Testing for Predictability in Conditionally Heteroskedastic Stock Returns," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 13(2), pages 342-375.
    11. Maheu, John M & McCurdy, Thomas H, 2000. "Identifying Bull and Bear Markets in Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 100-112, January.
    12. Becker, Kent G. & Finnerty, Joseph E. & Friedman, Joseph, 1995. "Economic news and equity market linkages between the U.S. and U.K," Journal of Banking & Finance, Elsevier, vol. 19(7), pages 1191-1210, October.
    13. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    14. Hui Guo, 2006. "On the Out-of-Sample Predictability of Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 79(2), pages 645-670, March.
    15. Lior Menzly & Oguzhan Ozbas, 2010. "Market Segmentation and Cross‐predictability of Returns," Journal of Finance, American Finance Association, vol. 65(4), pages 1555-1580, August.
    16. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    17. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    18. Elliott, Graham & Lieli, Robert P., 2013. "Predicting binary outcomes," Journal of Econometrics, Elsevier, vol. 174(1), pages 15-26.
    19. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    20. Harri Pönkä, 2017. "Predicting the direction of US stock markets using industry returns," Empirical Economics, Springer, vol. 52(4), pages 1451-1480, June.
    21. Westerlund, Joakim & Narayan, Paresh Kumar, 2012. "Does the choice of estimator matter when forecasting returns?," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2632-2640.
    22. Chevapatrakul, Thanaset, 2013. "Return sign forecasts based on conditional risk: Evidence from the UK stock market index," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2342-2353.
    23. Tina Hviid Rydberg & Neil Shephard, 2003. "Dynamics of Trade-by-Trade Price Movements: Decomposition and Models," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(1), pages 2-25.
    24. Estrella, Arturo, 1998. "A New Measure of Fit for Equations with Dichotomous Dependent Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 198-205, April.
    25. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    26. Heikki Kauppi & Pentti Saikkonen, 2008. "Predicting U.S. Recessions with Dynamic Binary Response Models," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 777-791, November.
    27. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    28. Harrison Hong & Jeremy C. Stein, 1999. "A Unified Theory of Underreaction, Momentum Trading, and Overreaction in Asset Markets," Journal of Finance, American Finance Association, vol. 54(6), pages 2143-2184, December.
    29. Cenesizoglu, Tolga & Timmermann, Allan, 2012. "Do return prediction models add economic value?," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2974-2987.
    30. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    31. Nyberg, Henri, 2014. "A Bivariate Autoregressive Probit Model: Business Cycle Linkages And Transmission Of Recession Probabilities," Macroeconomic Dynamics, Cambridge University Press, vol. 18(4), pages 838-862, June.
    32. Pesaran, M. Hashem & Timmermann, Allan, 2009. "Testing Dependence Among Serially Correlated Multicategory Variables," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 325-337.
    33. Hjalmarsson, Erik, 2010. "Predicting Global Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(1), pages 49-80, February.
    34. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    35. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
    36. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
    37. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    38. Alotaibi, Abdullah R. & Mishra, Anil V., 2015. "Global and regional volatility spillovers to GCC stock markets," Economic Modelling, Elsevier, vol. 45(C), pages 38-49.
    39. Chen, Shiu-Sheng, 2009. "Predicting the bear stock market: Macroeconomic variables as leading indicators," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 211-223, February.
    40. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    41. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    42. Eun, Cheol S. & Shim, Sangdal, 1989. "International Transmission of Stock Market Movements," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(2), pages 241-256, June.
    43. Lahiri, Kajal & Wang, J. George, 2013. "Evaluating probability forecasts for GDP declines using alternative methodologies," International Journal of Forecasting, Elsevier, vol. 29(1), pages 175-190.
    44. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
    45. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    46. Anatolyev, Stanislav & Gospodinov, Nikolay, 2010. "Modeling Financial Return Dynamics via Decomposition," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 232-245.
    47. Merton, Robert C, 1981. "On Market Timing and Investment Performance. I. An Equilibrium Theory of Value for Market Forecasts," The Journal of Business, University of Chicago Press, vol. 54(3), pages 363-406, July.
    48. Anatolyev Stanislav, 2009. "Multi-Market Direction-of-Change Modeling Using Dependence Ratios," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.
    49. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    50. Jiang, Yu & Fang, Xianming, 2015. "Bull, bear or any other states in US stock market?," Economic Modelling, Elsevier, vol. 44(C), pages 54-58.
    51. Nyberg, Henri, 2013. "Predicting bear and bull stock markets with dynamic binary time series models," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3351-3363.
    52. Karolyi, G Andrew, 1995. "A Multivariate GARCH Model of International Transmissions of Stock Returns and Volatility: The Case of the United States and Canada," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 11-25, January.
    53. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
    54. Pagan, Adrian, 1984. "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 221-247, February.
    55. Gagnon, Louis & Karolyi, G. Andrew, 2006. "Price and Volatility Transmission across Borders," Working Paper Series 2006-5, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Nguyen & Wei-Xuan Li & Clara Chia-Sheng Chen, 2022. "Mean Reversions in Major Developed Stock Markets: Recent Evidence from Unit Root, Spectral and Abnormal Return Studies," JRFM, MDPI, vol. 15(4), pages 1-20, April.
    2. Antunes, António & Bonfim, Diana & Monteiro, Nuno & Rodrigues, Paulo M.M., 2018. "Forecasting banking crises with dynamic panel probit models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 249-275.
    3. Yi-Chieh Wen & Bin Li, 2020. "Lagged country returns and international stock return predictability during business cycle recession periods," Applied Economics, Taylor & Francis Journals, vol. 52(46), pages 5005-5019, October.
    4. Licheng Sun & Liang Meng & Mohammad Najand, 2017. "The Role of U.S. Market on International Risk-Return Tradeoff Relations," The Financial Review, Eastern Finance Association, vol. 52(3), pages 499-526, August.
    5. Henri Nyberg, 2018. "Forecasting US interest rates and business cycle with a nonlinear regime switching VAR model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(1), pages 1-15, January.
    6. Hadhri, Sinda & Ftiti, Zied, 2017. "Stock return predictability in emerging markets: Does the choice of predictors and models matter across countries?," Research in International Business and Finance, Elsevier, vol. 42(C), pages 39-60.
    7. Narayan, Paresh Kumar & Phan, Dinh Hoang Bach & Narayan, Seema, 2018. "Technology-investing countries and stock return predictability," Emerging Markets Review, Elsevier, vol. 36(C), pages 159-179.
    8. Perry Sadorsky, 2021. "Predicting Gold and Silver Price Direction Using Tree-Based Classifiers," JRFM, MDPI, vol. 14(5), pages 1-21, April.
    9. Narayan, Paresh Kumar, 2018. "Profitability of technology-investing Islamic and non-Islamic stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 52(C), pages 70-81.
    10. Sadorsky, Perry, 2022. "Forecasting solar stock prices using tree-based machine learning classification: How important are silver prices?," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    11. Lauri Nevasalmi, 2022. "Recession forecasting with high‐dimensional data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 752-764, July.
    12. Salisu, Afees A. & Tchankam, Jean Paul, 2022. "US Stock return predictability with high dimensional models," Finance Research Letters, Elsevier, vol. 45(C).
    13. Nguyen, Dat Thanh & Phan, Dinh Hoang Bach & Anglingkusumo, Reza & Sasongko, Aryo, 2021. "US government shutdowns and Indonesian stock market," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    14. Jonathan Iworiso & Spyridon Vrontos, 2020. "On the directional predictability of equity premium using machine learning techniques," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 449-469, April.
    15. Harri Pönkä, 2018. "Sentiment and sign predictability of stock returns," Economics Bulletin, AccessEcon, vol. 38(3), pages 1676-1684.
    16. Pönkä, Harri, 2016. "Real oil prices and the international sign predictability of stock returns," Finance Research Letters, Elsevier, vol. 17(C), pages 79-87.
    17. Narayan, Paresh Kumar & Liu, Ruipeng, 2018. "A new GARCH model with higher moments for stock return predictability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 93-103.
    18. Riza Erdugan & Nada Kulendran & Riccardo Natoli, 2019. "Incorporating financial market volatility to improve forecasts of directional changes in Australian share market returns," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(4), pages 417-445, December.
    19. Syed Abul, Basher & Perry, Sadorsky, 2022. "Forecasting Bitcoin price direction with random forests: How important are interest rates, inflation, and market volatility?," MPRA Paper 113293, University Library of Munich, Germany.
    20. Liu, Jingzhen & Kemp, Alexander, 2019. "Forecasting the sign of U.S. oil and gas industry stock index excess returns employing macroeconomic variables," Energy Economics, Elsevier, vol. 81(C), pages 672-686.
    21. Becker, Janis & Leschinski, Christian, 2018. "Directional Predictability of Daily Stock Returns," Hannover Economic Papers (HEP) dp-624, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    22. Perry Sadorsky, 2021. "A Random Forests Approach to Predicting Clean Energy Stock Prices," JRFM, MDPI, vol. 14(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harri Pönkä, 2017. "Predicting the direction of US stock markets using industry returns," Empirical Economics, Springer, vol. 52(4), pages 1451-1480, June.
    2. Pönkä, Harri, 2016. "Real oil prices and the international sign predictability of stock returns," Finance Research Letters, Elsevier, vol. 17(C), pages 79-87.
    3. Nyberg, Henri, 2013. "Predicting bear and bull stock markets with dynamic binary time series models," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3351-3363.
    4. Liu, Jingzhen & Kemp, Alexander, 2019. "Forecasting the sign of U.S. oil and gas industry stock index excess returns employing macroeconomic variables," Energy Economics, Elsevier, vol. 81(C), pages 672-686.
    5. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
    6. Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2017. "Further evidence on bear market predictability: The role of the external finance premium," International Review of Economics & Finance, Elsevier, vol. 50(C), pages 106-121.
    7. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
    8. Harri Pönkä, 2018. "Sentiment and sign predictability of stock returns," Economics Bulletin, AccessEcon, vol. 38(3), pages 1676-1684.
    9. Hadhri, Sinda & Ftiti, Zied, 2017. "Stock return predictability in emerging markets: Does the choice of predictors and models matter across countries?," Research in International Business and Finance, Elsevier, vol. 42(C), pages 39-60.
    10. Liu, Jiadong & Papailias, Fotis & Quinn, Barry, 2021. "Direction-of-change forecasting in commodity futures markets," International Review of Financial Analysis, Elsevier, vol. 74(C).
    11. Felix Haase & Matthias Neuenkirch, 2020. "Predictability of Bull and Bear Markets: A New Look at Forecasting Stock Market Regimes (and Returns) in the US," Working Paper Series 2020-03, University of Trier, Research Group Quantitative Finance and Risk Analysis.
    12. Straetmans, S.T.M. & Candelon, B. & Ahmed, J., 2012. "Predicting and capitalizing on stock market bears in the U.S," Research Memorandum 019, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    13. Hashmat Khan & Santosh Upadhayaya, 2020. "Does business confidence matter for investment?," Empirical Economics, Springer, vol. 59(4), pages 1633-1665, October.
    14. Gu, Wentao & Peng, Yiqing, 2019. "Forecasting the market return direction based on a time-varying probability density model," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    15. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    16. Dichtl, Hubert, 2020. "Forecasting excess returns of the gold market: Can we learn from stock market predictions?," Journal of Commodity Markets, Elsevier, vol. 19(C).
    17. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    18. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    19. Harri Ponka, 2017. "The Role of Credit in Predicting US Recessions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 469-482, August.
    20. Chronopoulos, Dimitris K. & Papadimitriou, Fotios I. & Vlastakis, Nikolaos, 2018. "Information demand and stock return predictability," Journal of International Money and Finance, Elsevier, vol. 80(C), pages 59-74.

    More about this item

    Keywords

    Excess stock return; Directional predictability; Bivariate probit model; Market timing;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:58:y:2016:i:c:p:323-338. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.