IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Does the choice of estimator matter when forecasting returns?

  • Westerlund, Joakim
  • Narayan, Paresh Kumar

While the literature concerned with the predictability of stock returns is huge, surprisingly little is known when it comes to role of the choice of estimator of the predictive regression. Ideally, the choice of estimator should be rooted in the salient features of the data. In case of predictive regressions of returns there are at least three such features; (i) returns are heteroskedastic, (ii) predictors are persistent, and (iii) regression errors are correlated with predictor innovations. In this paper we examine if the accounting of these features in the estimation process has any bearing on our ability to forecast future returns. The results suggest that it does.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Banking & Finance.

Volume (Year): 36 (2012)
Issue (Month): 9 ()
Pages: 2632-2640

in new window

Handle: RePEc:eee:jbfina:v:36:y:2012:i:9:p:2632-2640
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Markku Lanne, 2002. "Testing The Predictability Of Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 407-415, August.
  2. Campbell, John Y & Shiller, Robert J, 1988. " Stock Prices, Earnings, and Expected Dividends," Journal of Finance, American Finance Association, vol. 43(3), pages 661-76, July.
  3. Robert J. Shiller & John Y. Campbell, 1986. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," Cowles Foundation Discussion Papers 812, Cowles Foundation for Research in Economics, Yale University.
  4. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
  5. Wessel Marquering & Marno Verbeek, 2000. "The Economic Value of Predicting Stock Index Returns and Volatility," Center for Economic Studies - Discussion papers ces0020, Katholieke Universiteit Leuven, Centrum voor Economische Studiƫn.
  6. Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
  7. Robert F. Stambaugh, 1999. "Predictive Regressions," NBER Technical Working Papers 0240, National Bureau of Economic Research, Inc.
  8. Campbell, John & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Scholarly Articles 3122601, Harvard University Department of Economics.
  9. Chen, Shiu-Sheng, 2009. "Predicting the bear stock market: Macroeconomic variables as leading indicators," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 211-223, February.
  10. Lettau, Martin & Ludvigson, Sydney, 1999. "Consumption, Aggregate Wealth and Expected Stock Returns," CEPR Discussion Papers 2223, C.E.P.R. Discussion Papers.
  11. Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
  12. Todd E. Clark & Michael W. McCracken, 2000. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Econometric Society World Congress 2000 Contributed Papers 0319, Econometric Society.
  13. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
  14. Flood, Robert P & Rose, Andrew K, 2009. "Inflation Targeting and Business Cycle Synchronization," CEPR Discussion Papers 7377, C.E.P.R. Discussion Papers.
  15. Kothari, S. P. & Shanken, Jay, 1997. "Book-to-market, dividend yield, and expected market returns: A time-series analysis," Journal of Financial Economics, Elsevier, vol. 44(2), pages 169-203, May.
  16. Lewellen, Jonathan, 2004. "Predicting returns with financial ratios," Journal of Financial Economics, Elsevier, vol. 74(2), pages 209-235, November.
  17. David E. Rapach & Christian E. Weber, 2004. "Financial Variables and the Simulated Out-of-Sample Forecastability of U.S. Output Growth Since 1985: An Encompassing Approach," Economic Inquiry, Western Economic Association International, vol. 42(4), pages 717-738, October.
  18. Martin Lettau & Stijn Van Nieuwerburgh, 2008. "Reconciling the Return Predictability Evidence," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1607-1652, July.
  19. Scott, Elton & Tucker, Alan L., 1989. "Predicting currency return volatility," Journal of Banking & Finance, Elsevier, vol. 13(6), pages 839-851, December.
  20. Jacob Boudoukh & Matthew Richardson & Robert F. Whitelaw, 2008. "The Myth of Long-Horizon Predictability," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1577-1605, July.
  21. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
  22. Jay Choi, Jongmoo & Hauser, Shmuel & Kopecky, Kenneth J., 1999. "Does the stock market predict real activity? Time series evidence from the G-7 countries," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1771-1792, December.
  23. Owen Lamont, 1998. "Earnings and Expected Returns," Journal of Finance, American Finance Association, vol. 53(5), pages 1563-1587, October.
  24. Bossaerts, Peter & Hillion, Pierre, 1999. "Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?," Review of Financial Studies, Society for Financial Studies, vol. 12(2), pages 405-28.
  25. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
  26. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:36:y:2012:i:9:p:2632-2640. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.