IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v37y2013i9p3351-3363.html
   My bibliography  Save this article

Predicting bear and bull stock markets with dynamic binary time series models

Author

Listed:
  • Nyberg, Henri

Abstract

Despite the voluminous empirical research on the potential predictability of stock returns, much less attention has been paid to the predictability of bear and bull stock markets. In this study, the aim is to predict U.S. bear and bull stock markets with dynamic binary time series models. Based on the analysis of the monthly U.S. data set, bear and bull markets are predictable in and out of sample. In particular, substantial additional predictive power can be obtained by allowing for a dynamic structure in the binary response model. Probability forecasts of the state of the stock market can also be utilized to obtain optimal asset allocation decisions between stocks and bonds. It turns out that the dynamic probit models yield much higher portfolio returns than the buy-and-hold trading strategy in a small-scale market timing experiment.

Suggested Citation

  • Nyberg, Henri, 2013. "Predicting bear and bull stock markets with dynamic binary time series models," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3351-3363.
  • Handle: RePEc:eee:jbfina:v:37:y:2013:i:9:p:3351-3363 DOI: 10.1016/j.jbankfin.2013.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426613002264
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heikki Kauppi & Pentti Saikkonen, 2008. "Predicting U.S. Recessions with Dynamic Binary Response Models," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 777-791, November.
    2. Gabriel Perez-Quiros & Allan Timmermann, 2000. "Firm Size and Cyclical Variations in Stock Returns," Journal of Finance, American Finance Association, vol. 55(3), pages 1229-1262, June.
    3. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
    4. Massimo Guidolin & Allan Timmermann, 2005. "Economic Implications of Bull and Bear Regimes in UK Stock and Bond Returns," Economic Journal, Royal Economic Society, vol. 115(500), pages 111-143, January.
    5. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    6. Massimo Guidolin & Allan Timmermann, 2008. "Size and Value Anomalies under Regime Shifts," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(1), pages 1-48, Winter.
    7. Cenesizoglu, Tolga & Timmermann, Allan, 2012. "Do return prediction models add economic value?," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2974-2987.
    8. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.
    9. Jun Tu, 2010. "Is Regime Switching in Stock Returns Important in Portfolio Decisions?," Management Science, INFORMS, vol. 56(7), pages 1198-1215, July.
    10. Turner, C.M. & Startz, R. & Nelson, C.R., 1989. "The Markov Model Of Heteroskedasticity, Risk And Learning In The Stock Market," Working Papers 89-01, University of Washington, Department of Economics.
    11. Candelon, Bertrand & Piplack, Jan & Straetmans, Stefan, 2008. "On measuring synchronization of bulls and bears: The case of East Asia," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1022-1035, June.
    12. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    13. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
    14. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
    15. Liu, Hening, 2011. "Dynamic portfolio choice under ambiguity and regime switching mean returns," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 623-640, April.
    16. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    17. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    18. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    19. Chen, Shiu-Sheng, 2009. "Predicting the bear stock market: Macroeconomic variables as leading indicators," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 211-223, February.
    20. Maheu, John M & McCurdy, Thomas H, 2000. "Identifying Bull and Bear Markets in Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 100-112, January.
    21. Pastor, Lubos & Stambaugh, Robert F., 2000. "Comparing asset pricing models: an investment perspective," Journal of Financial Economics, Elsevier, pages 335-381.
    22. Pesaran, M Hashem & Timmermann, Allan, 1995. " Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    23. Hui Guo, 2006. "On the Out-of-Sample Predictability of Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 79(2), pages 645-670, March.
    24. Tina Hviid Rydberg & Neil Shephard, 2003. "Dynamics of Trade-by-Trade Price Movements: Decomposition and Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(1), pages 2-25.
    25. Robert Inklaar & Jan Jacobs & Ward Romp, 2005. "Business Cycle Indexes: Does a Heap of Data Help?," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2004(3), pages 309-336.
    26. Huang, Alex YiHou, 2012. "Asymmetric dynamics of stock price continuation," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1839-1855.
    27. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    28. Anatolyev, Stanislav & Gospodinov, Nikolay, 2010. "Modeling Financial Return Dynamics via Decomposition," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 232-245.
    29. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, pages 291-311.
    30. Diebold, Francis X & Rudebusch, Glenn D, 1989. "Scoring the Leading Indicators," The Journal of Business, University of Chicago Press, vol. 62(3), pages 369-391, July.
    31. Michael J. Cooper & Roberto C. Gutierrez & Allaudeen Hameed, 2004. "Market States and Momentum," Journal of Finance, American Finance Association, vol. 59(3), pages 1345-1365, June.
    32. Hamilton, James D., 2011. "Calling recessions in real time," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1006-1026, October.
    33. Chauvet, Marcelle & Potter, Simon, 2000. "Coincident and leading indicators of the stock market," Journal of Empirical Finance, Elsevier, vol. 7(1), pages 87-111, May.
    34. Estrella, Arturo, 1998. "A New Measure of Fit for Equations with Dichotomous Dependent Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 198-205, April.
    35. Adrian R. Pagan & Kirill A. Sossounov, 2003. "A simple framework for analysing bull and bear markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 23-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Efthymios Pavlidis & Alisa Yusupova & Ivan Paya & David Peel & Enrique Martínez-García & Adrienne Mack & Valerie Grossman, 2016. "Episodes of Exuberance in Housing Markets: In Search of the Smoking Gun," The Journal of Real Estate Finance and Economics, Springer, vol. 53(4), pages 419-449, November.
    2. Nyberg, Henri & Pönkä, Harri, 2016. "International sign predictability of stock returns: The role of the United States," Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
    3. Harri Pönkä, 2017. "Predicting the direction of US stock markets using industry returns," Empirical Economics, Springer, pages 1451-1480.
    4. Dockner, Engelbert J. & Mayer, Manuel & Zechner, Josef, 2013. "Sovereign bond risk premiums," CFS Working Paper Series 2013/28, Center for Financial Studies (CFS).
    5. Fernandez-Perez, Adrian & Fernández-Rodríguez, Fernando & Sosvilla-Rivero, Simón, 2014. "The term structure of interest rates as predictor of stock returns: Evidence for the IBEX 35 during a bear market," International Review of Economics & Finance, Elsevier, vol. 31(C), pages 21-33.
    6. Baetje, Fabian & Menkhoff, Lukas, 2013. "Macro determinants of U.S. stock market risk premia in bull and bear markets," Hannover Economic Papers (HEP) dp-520, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    7. Fokianos, Konstantinos & Moysiadis, Theodoros, 2017. "Binary time series models driven by a latent process," Econometrics and Statistics, Elsevier, vol. 2(C), pages 117-130.
    8. Wu, Shue-Jen & Lee, Wei-Ming, 2015. "Predicting severe simultaneous bear stock markets using macroeconomic variables as leading indicators," Finance Research Letters, Elsevier, vol. 13(C), pages 196-204.
    9. Markku Lanne & Henri Nyberg, 2015. "Nonlinear dynamic interrelationships between real activity and stock returns," CREATES Research Papers 2015-36, Department of Economics and Business Economics, Aarhus University.
    10. Wu, Shue-Jen & Lee, Wei-Ming, 2015. "Intertemporal risk–return relationships in bull and bear markets," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 308-325.
    11. repec:bap:journl:170307 is not listed on IDEAS
    12. Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2017. "Further evidence on bear market predictability: The role of the external finance premium," International Review of Economics & Finance, Elsevier, vol. 50(C), pages 106-121.

    More about this item

    Keywords

    Bear markets; Turning point; Probit model; Asset allocation; Out-of-sample forecasts;

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:37:y:2013:i:9:p:3351-3363. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.