IDEAS home Printed from https://ideas.repec.org/p/zbw/cauewp/3197.html
   My bibliography  Save this paper

Alternative distributions for observation driven count series models

Author

Listed:
  • Drescher, Daniel

Abstract

Observation-driven models provide a flexible framework for modelling time series of counts. They are able to capture a wide range of dependence structures. Many applications in this field of research are concerned with count series whose conditional distribution given past observations and explanatory variables is assumed to follow a Poisson distribution. This assumption is very convenient since the Poisson distribution is simple and leads to models which are easy to implement. On the other hand this assumption is often too restrictive since it implies equidispersion, the fact that the conditional mean equals the conditional variance. This assumption is often violated in empirical applications. Therefore more flexible distributions which allow for overdispersion or underdispersion should be used. This paper is concerned with the use of alternative distributions in the framework of observationdriven count series models. In this paper different count distributions and their properties are reviewed and used for modelling. The models under consideration are applied to a time series of daily counts of asthma presentations at a Sydney hospital. This data set has already been analyzed by Davis et al. (1999, 2000). The Poisson-GLARMA model proposed by these authors is used as a benchmark. This paper extends the work of Davis et al. (1999) to distributions which are nested in either the generalized negative binomial or the generalized Poisson distribution. Additionally the maximum likelihood estimation for observation-driven models with generalized distributions is presented in this paper.

Suggested Citation

  • Drescher, Daniel, 2005. "Alternative distributions for observation driven count series models," Economics Working Papers 2005-11, Christian-Albrechts-University of Kiel, Department of Economics.
  • Handle: RePEc:zbw:cauewp:3197
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/21999/1/EWP-2005-11.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Tina Hviid Rydberg & Neil Shephard, 2003. "Dynamics of Trade-by-Trade Price Movements: Decomposition and Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(1), pages 2-25.
    2. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    3. Saha, Atanu & Dong, Diangsheng, 1997. "Estimating Nested Count Data Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(3), pages 423-430, August.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Count series; observation-driven models; GLARMA; dicrete distributions;

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauewp:3197. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/vakiede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.