IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Do We Really Need Both BEKK and DCC? A Tale of Two Multivariate GARCH Models"

by Massimiliano Caporin & Michael McAleer

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Chia-Lin Chang & Michael McAleer, 2011. "Aggregation, Heterogeneous Autoregression and Volatility of Daily International Tourist Arrivals and Exchange Rates," Documentos de Trabajo del ICAE 2011-13, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  2. Boldanov, Rustam & Degiannakis, Stavros & Filis, George, 2015. "Time-varying correlation between oil and stock market volatilities: Evidence from oil-importing and oil-exporting countries," MPRA Paper 72082, University Library of Munich, Germany.
  3. Asai, Manabu & Caporin, Massimiliano & McAleer, Michael, 2015. "Forecasting Value-at-Risk using block structure multivariate stochastic volatility models," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 40-50.
  4. Louzis, Dimitrios & Vouldis, Angelos, 2013. "A financial systemic stress index for Greece," Working Paper Series 1563, European Central Bank.
  5. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," Working Papers in Economics 10/34, University of Canterbury, Department of Economics and Finance.
  6. Aielli, Gian Piero & Caporin, Massimiliano, 2014. "Variance clustering improved dynamic conditional correlation MGARCH estimators," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 556-576.
  7. Paolella, Marc S. & Polak, Paweł, 2015. "ALRIGHT: Asymmetric LaRge-scale (I)GARCH with Hetero-Tails," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 282-297.
  8. Adams, Zeno & Fuess, Roland & Glueck, Thorsten, 2016. "Are Correlations Constant? Empirical and Theoretical Results on Popular Correlation Models in Finance," Working Papers on Finance 1613, University of St. Gallen, School of Finance.
  9. Caporin, M. & McAleer, M.J., 2013. "Ten Things You Should Know About DCC," Econometric Institute Research Papers EI 2013-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  10. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2010. "Analyzing and Forecasting Volatility Spillovers, Asymmetries and Hedging in Major Oil Markets," Working Papers in Economics 10/19, University of Canterbury, Department of Economics and Finance.
  11. Chia-Lin Chang & Michael McAleer & Yanghuiting Wang, 2016. "Testing co-volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Documentos de Trabajo del ICAE 2016-10, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  12. Ruiz, Esther & Hotta, Luiz & Almeida, Daniel De, 2015. "MGARCH models: tradeoff between feasibility and flexibility," DES - Working Papers. Statistics and Econometrics. WS ws1516, Universidad Carlos III de Madrid. Departamento de Estadística.
  13. Guglielmo Maria Caporale & John Hunter & Faek Menla Ali, 2013. "On the Linkages between Stock Prices and Exchange Rates: Evidence from the Banking Crisis of 2007-2010," Discussion Papers of DIW Berlin 1289, DIW Berlin, German Institute for Economic Research.
  14. Wen, Xiaoqian & Guo, Yanfeng & Wei, Yu & Huang, Dengshi, 2014. "How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China," Energy Economics, Elsevier, vol. 41(C), pages 63-75.
  15. Manabu Asai & Michael McAleer, 2013. "A Fractionally Integrated Wishart Stochastic Volatility Model," KIER Working Papers 848, Kyoto University, Institute of Economic Research.
  16. Berger, T. & Missong, M., 2014. "Financial crisis, Value-at-Risk forecasts and the puzzle of dependency modeling," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 33-38.
  17. Syed Abul, Basher & Perry, Sadorsky, 2015. "Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH," MPRA Paper 68231, University Library of Munich, Germany.
  18. Aielli, Gian Piero & Caporin, Massimiliano, 2013. "Fast clustering of GARCH processes via Gaussian mixture models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 205-222.
  19. Michael McAleer & Juan-Ángel Jiménez-Martín & Teodosio Pérez Amaral, 2012. "Has the Basel Accord Improved Risk Management During the Global Financial Crisis?," Documentos de Trabajo del ICAE 2012-26, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Oct 2012.
  20. Rabeh Khalfaoui & Mohammed Boutahar, 2012. "Portfolio Risk Evaluation An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis," AMSE Working Papers 1208, Aix-Marseille School of Economics, Marseille, France.
  21. Bauwens, Luc & Grigoryeva, Lyudmila & Ortega, Juan-Pablo, 2016. "Estimation and empirical performance of non-scalar dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 17-36.
  22. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2011. "Conditional Correlations and Volatility Spillovers Between Crude Oil and Stock Index Returns," Documentos de Trabajo del ICAE 2011-34, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  23. Chia-Lin Chang & Hui-Kuang Hsu & Michael McAleer, 2012. "Is Small Beautiful? Size Effects of Volatility Spillovers for Firm Performance and Exchange Rates in Tourism," KIER Working Papers 839, Kyoto University, Institute of Economic Research.
  24. Rasmus Søndergaard Pedersen, 2014. "Targeting estimation of CCC-Garch models with infinite fourth moments," Discussion Papers 14-04, University of Copenhagen. Department of Economics.
  25. Chia-Lin Chang & Michael McAleer & Yu-Ann Wang, 2016. "Modelling Volatility Spillovers for Bio-ethanol, Sugarcane and Corn," Tinbergen Institute Discussion Papers 16-014/III, Tinbergen Institute.
  26. Michael McAleer, 2014. "Discussion of “Principal Volatility Component Analysis” by Yu-Pin Hu and Ruey Tsay," Working Papers in Economics 14/09, University of Canterbury, Department of Economics and Finance.
  27. Chang, C-L. & McAleer, M.J. & Tansuchat, R., 2010. "Analyzing and Forecasting Volatility Spillovers and Asymmetries in Major Crude Oil Spot, Forward and Futures Markets," Econometric Institute Research Papers EI 2010-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  28. Shawkat M. Hammoudeh & Yuan Yuan & Michael McAleer, 2010. "Exchange Rate and Industrial Commodity Volatility Transmissions, Asymmetries and Hedging Strategies," CIRJE F-Series CIRJE-F-741, CIRJE, Faculty of Economics, University of Tokyo.
  29. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "How are VIX and Stock Index ETF Related?," Documentos de Trabajo del ICAE 2016-02, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  30. Lakshina, Valeriya, 2014. "Is it possible to break the «curse of dimensionality»? Spatial specifications of multivariate volatility models," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 36(4), pages 61-78.
  31. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About the Dynamic Conditional Correlation Representation," Documentos de Trabajo del ICAE 2013-21, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  32. Chang, C-L. & Jiménez-Martín, J.A. & McAleer, M.J. & Pérez-Amaral, T., 2011. "The Rise and Fall of S&P500 Variance Futures," Econometric Institute Research Papers EI2011-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  33. Caporale, Guglielmo Maria & Menla Ali, Faek & Spagnolo, Nicola, 2015. "Exchange rate uncertainty and international portfolio flows: A multivariate GARCH-in-mean approach," Journal of International Money and Finance, Elsevier, vol. 54(C), pages 70-92.
  34. R. REYTIER & A. Blanes & Q. Gaucher & S. Thiam & P. Debled, 2015. "Behavior of Covariance Matrices with Equi-Correlation Approach," Proceedings of International Academic Conferences 2805027, International Institute of Social and Economic Sciences.
  35. D.E. Allen & A. Kramadibrata & Michael McAleer & R. Powell & A. K. Singh, 2012. "A non-parametric and entropy based analysis of the relationship between the VIX and S&P500," Documentos de Trabajo del ICAE 2012-19, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  36. Gatfaoui, Hayette, 2013. "Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets," Economic Modelling, Elsevier, vol. 30(C), pages 776-791.
  37. Yudong Wang & Li Liu, 2016. "Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging," Empirical Economics, Springer, vol. 50(4), pages 1481-1509, June.
  38. Tsouknidis, Dimitris A., 2016. "Dynamic volatility spillovers across shipping freight markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 90-111.
  39. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
  40. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2011. "Extreme values dependence of risk in Latin American markets," Economics Bulletin, AccessEcon, vol. 31(4), pages 2903-2914.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.