IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v37y2009i12p5125-5139.html
   My bibliography  Save this item

Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mykola Gusti & Nicklas Forsell & Petr Havlik & Nikolay Khabarov & Florian Kraxner & Michael Obersteiner, 2019. "The sensitivity of the costs of reducing emissions from deforestation and degradation (REDD) to future socioeconomic drivers and its implications for mitigation policy design," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 1123-1141, August.
  2. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.
  3. Gang Lin & Dong Jiang & Donglin Dong & Jingying Fu & Xiang Li, 2020. "Spatial Characteristic of Coal Production-Based Carbon Emissions in Chinese Mining Cities," Energies, MDPI, vol. 13(2), pages 1-11, January.
  4. Krook-Riekkola, Anna & Berg, Charlotte & Ahlgren, Erik O. & Söderholm, Patrik, 2017. "Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model," Energy, Elsevier, vol. 141(C), pages 803-817.
  5. Charlie Wilson:, 2010. "Growth dynamics of energy technologies: using historical patterns to validate low carbon scenarios," GRI Working Papers 32, Grantham Research Institute on Climate Change and the Environment.
  6. Yuliya Mamatok & Yingyi Huang & Chun Jin & Xingqun Cheng, 2019. "A System Dynamics Model for CO 2 Mitigation Strategies at a Container Seaport," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
  7. Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.
  8. Steckel, Jan Christoph & Jakob, Michael & Marschinski, Robert & Luderer, Gunnar, 2011. "From carbonization to decarbonization?--Past trends and future scenarios for China's CO2 emissions," Energy Policy, Elsevier, vol. 39(6), pages 3443-3455, June.
  9. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
  10. Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
  11. Yu, Shiwei & Zhang, Junjie & Zheng, Shuhong & Sun, Han, 2015. "Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method," Energy Policy, Elsevier, vol. 77(C), pages 46-55.
  12. Ludig, Sylvie & Haller, Markus & Schmid, Eva & Bauer, Nico, 2011. "Fluctuating renewables in a long-term climate change mitigation strategy," Energy, Elsevier, vol. 36(11), pages 6674-6685.
  13. Shayma Al Bannay & Satoshi Takizawa, 2022. "Decoupling of Water Production and Electricity Generation from GDP and Population in the Gulf Cooperation Council (GCC) Countries," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
  14. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
  15. Gambhir, Ajay & Schulz, Niels & Napp, Tamaryn & Tong, Danlu & Munuera, Luis & Faist, Mark & Riahi, Keywan, 2013. "A hybrid modelling approach to develop scenarios for China's carbon dioxide emissions to 2050," Energy Policy, Elsevier, vol. 59(C), pages 614-632.
  16. Olegs Krasnopjorovs & Daniels Jukna & Konstantins Kovalovs, 2022. "On the Use of General Equilibrium Model to Assess the Impact of Climate Policy in Latvia," Post-Print hal-03861139, HAL.
  17. Kornelis Blok & Angélica Afanador & Irina van der Hoorn & Tom Berg & Oreane Y. Edelenbosch & Detlef P. van Vuuren, 2020. "Assessment of Sectoral Greenhouse Gas Emission Reduction Potentials for 2030," Energies, MDPI, vol. 13(4), pages 1-24, February.
  18. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
  19. Xiaoxuan Wei & Meng Ye & Liang Yuan & Wei Bi & Weisheng Lu, 2022. "Analyzing the Freight Characteristics and Carbon Emission of Construction Waste Hauling Trucks: Big Data Analytics of Hong Kong," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
  20. Fattahi, A. & Sijm, J. & Faaij, A., 2020. "A systemic approach to analyze integrated energy system modeling tools: A review of national models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  21. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
  22. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Bridging the scales: A conceptual model for coordinated expansion of renewable power generation, transmission and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2687-2695.
  23. van den Broek, Machteld & Veenendaal, Paul & Koutstaal, Paul & Turkenburg, Wim & Faaij, André, 2011. "Impact of international climate policies on CO2 capture and storage deployment: Illustrated in the Dutch energy system," Energy Policy, Elsevier, vol. 39(4), pages 2000-2019, April.
  24. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
  25. Jieshuang Dong & Yiming Li & Wenxiang Li & Songze Liu, 2022. "CO 2 Emission Reduction Potential of Road Transport to Achieve Carbon Neutrality in China," Sustainability, MDPI, vol. 14(9), pages 1-24, May.
  26. Dagoumas, [alpha].S. & Barker, T.S., 2010. "Pathways to a low-carbon economy for the UK with the macro-econometric E3MG model," Energy Policy, Elsevier, vol. 38(6), pages 3067-3077, June.
  27. Yu, Shiwei & Agbemabiese, Lawrence & Zhang, Junjie, 2016. "Estimating the carbon abatement potential of economic sectors in China," Applied Energy, Elsevier, vol. 165(C), pages 107-118.
  28. Zhou, W. & Moncaster, A. & Reiner, D. & Guthrie, P., 2020. "Developing a generic System Dynamics model for building stock transformation towards energy efficiency and low-carbon development," Cambridge Working Papers in Economics 2057, Faculty of Economics, University of Cambridge.
  29. Kriegler, Elmar & Petermann, Nils & Krey, Volker & Schwanitz, Valeria Jana & Luderer, Gunnar & Ashina, Shuichi & Bosetti, Valentina & Eom, Jiyong & Kitous, Alban & Méjean, Aurélie & Paroussos, Leonida, 2015. "Diagnostic indicators for integrated assessment models of climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 45-61.
  30. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
  31. Daniel Johansson & Paul Lucas & Matthias Weitzel & Erik Ahlgren & A. Bazaz & Wenying Chen & Michel Elzen & Joydeep Ghosh & Maria Grahn & Qiao-Mei Liang & Sonja Peterson & Basanta Pradhan & Bas Ruijven, 2015. "Multi-model comparison of the economic and energy implications for China and India in an international climate regime," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1335-1359, December.
  32. Feifei Qin & Xiaoning Zhang, 2015. "Designing an Optimal Subsidy Scheme to Reduce Emissions for a Competitive Urban Transport Market," Sustainability, MDPI, vol. 7(9), pages 1-16, August.
  33. Simoes, Sofia & Fortes, Patrícia & Seixas, Júlia & Huppes, Gjalt, 2015. "Assessing effects of exogenous assumptions in GHG emissions forecasts – a 2020 scenario study for Portugal using the Times energy technology model," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 221-235.
  34. Li, Wenxiang & Bao, Lei & Wang, Luqi & Li, Ye & Mai, Xianmin, 2019. "Comparative evaluation of global low-carbon urban transport," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 14-26.
  35. Scrieciu, S. Şerban & Barker, Terry & Ackerman, Frank, 2013. "Pushing the boundaries of climate economics: critical issues to consider in climate policy analysis," Ecological Economics, Elsevier, vol. 85(C), pages 155-165.
  36. Kok, Robert & Annema, Jan Anne & van Wee, Bert, 2011. "Cost-effectiveness of greenhouse gas mitigation in transport: A review of methodological approaches and their impact," Energy Policy, Elsevier, vol. 39(12), pages 7776-7793.
  37. van Vuuren, Detlef P. & Kram, Tom, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 644-647, July.
  38. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  39. Mendoza Beltran, Angelica & den Elzen, Michel G.J. & Hof, Andries F. & van Vuuren, Detlef P. & van Vliet, Jasper, 2011. "Exploring the bargaining space within international climate negotiations based on political, economic and environmental considerations," Energy Policy, Elsevier, vol. 39(11), pages 7361-7371.
  40. Schwanitz, Valeria Jana & Piontek, Franziska & Bertram, Christoph & Luderer, Gunnar, 2014. "Long-term climate policy implications of phasing out fossil fuel subsidies," Energy Policy, Elsevier, vol. 67(C), pages 882-894.
  41. Cohen, Francois & Pfeiffer, Alexander, 2018. "The Impact of Negative Emissions Technologies and Natural Climate Solutions on Power-Sector Asset Stranding," INET Oxford Working Papers 2018-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
  42. Gerbelová, Hana & Amorim, Filipa & Pina, André & Melo, Mário & Ioakimidis, Christos & Ferrão, Paulo, 2014. "Potential of CO2 (carbon dioxide) taxes as a policy measure towards low-carbon Portuguese electricity sector by 2050," Energy, Elsevier, vol. 69(C), pages 113-119.
  43. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
  44. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  45. Michel Elzen & Angelica Beltran & Andries Hof & Bas Ruijven & Jasper Vliet, 2013. "Reduction targets and abatement costs of developing countries resulting from global and developed countries’ reduction targets by 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(4), pages 491-512, April.
  46. Siala, Kais & Mier, Mathias & Schmidt, Lukas & Torralba-Díaz, Laura & Sheykhha, Siamak & Savvidis, Georgios, 2022. "Which model features matter? An experimental approach to evaluate power market modeling choices," Energy, Elsevier, vol. 245(C).
  47. Hepburn, Cameron & Pfeiffer, Alexander & Vogt-Schilb, Adrien & J. Tulloch, Daniel, 2018. "Dead on arrival? Implicit stranded assets in leading IAM scenarios," INET Oxford Working Papers 2018-08, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
  48. Jigu Seo & Junhong Park & Yunjung Oh & Sungwook Park, 2016. "Estimation of Total Transport CO 2 Emissions Generated by Medium- and Heavy-Duty Vehicles (MHDVs) in a Sector of Korea," Energies, MDPI, vol. 9(8), pages 1-13, August.
  49. Hoogwijk, Monique & Rue du Can, Stephane de la & Novikova, Aleksandra & Urge-Vorsatz, Diana & Blomen, Eliane & Blok, Kornelis, 2010. "Assessment of bottom-up sectoral and regional mitigation potentials," Energy Policy, Elsevier, vol. 38(6), pages 3044-3057, June.
  50. Kim, Hansung & Cheon, Hyungkyu & Ahn, Young-Hwan & Choi, Dong Gu, 2019. "Uncertainty quantification and scenario generation of future solar photovoltaic price for use in energy system models," Energy, Elsevier, vol. 168(C), pages 370-379.
  51. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
  52. Chicco, Gianfranco & Stephenson, Paule M., 2012. "Effectiveness of setting cumulative carbon dioxide emissions reduction targets," Energy, Elsevier, vol. 42(1), pages 19-31.
  53. Willenbockel, Dirk, 2014. "Reflections on the prospects for pro-poor low-carbon growth," MPRA Paper 69863, University Library of Munich, Germany.
  54. van Ruijven, Bas & van Vuuren, Detlef P., 2009. "Oil and natural gas prices and greenhouse gas emission mitigation," Energy Policy, Elsevier, vol. 37(11), pages 4797-4808, November.
  55. Matsui, Kanae & Ochiai, Hideya & Yamagata, Yoshiki, 2014. "Feedback on electricity usage for home energy management: A social experiment in a local village of cold region," Applied Energy, Elsevier, vol. 120(C), pages 159-168.
  56. Jonek Kowalska, Izabela, 2015. "Challenges for long-term industry restructuring in the Upper Silesian Coal Basin: What has Polish coal mining achieved and failed from a twenty-year perspective?," Resources Policy, Elsevier, vol. 44(C), pages 135-149.
  57. C. Wilson & A. Grubler & N. Bauer & V. Krey & K. Riahi, 2013. "Future capacity growth of energy technologies: are scenarios consistent with historical evidence?," Climatic Change, Springer, vol. 118(2), pages 381-395, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.