IDEAS home Printed from https://ideas.repec.org/p/lsg/lsgwps/wp32.html
   My bibliography  Save this paper

Growth dynamics of energy technologies: using historical patterns to validate low carbon scenarios

Author

Listed:
  • Charlie Wilson:

Abstract

Historical growth dynamics of energy technologies reveal a consistent relationship between the extent to which a technology�s installed capacity grows and the time duration of that growth. This extent � duration relationship is remarkably consistent across both supply-side and demand-side technologies, and both old and new energy technologies. Consequently, it can be used as a means of validating future scenarios of energy technology growth under carbon constraints. This validation methodology is tested on the extents and durations of growth for a range of low carbon technologies in scenarios generated by the MESSAGE energy system model which has been widely used by the IPCC. The key finding is that low carbon technology growth in the scenarios appears generally conservative relative to what has been evidenced historically. This is counterintuitive given the extremely rapid growth rates of certain low carbon technologies under tight carbon constraints. Reasons for the apparent scenario conservatism are explored. Parametric conservatism in the underlying energy system model seems the most likely explanation.

Suggested Citation

  • Charlie Wilson:, 2010. "Growth dynamics of energy technologies: using historical patterns to validate low carbon scenarios," GRI Working Papers 32, Grantham Research Institute on Climate Change and the Environment.
  • Handle: RePEc:lsg:lsgwps:wp32
    as

    Download full text from publisher

    File URL: http://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/2010/12/wp32_growth-dynamics-low-carbon.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Utterback, James M & Abernathy, William J, 1975. "A dynamic model of process and product innovation," Omega, Elsevier, vol. 3(6), pages 639-656, December.
    3. Shilpa Rao, Ilkka Keppo and Keywan Riahi, 2006. "Importance of Technological Change and Spillovers in Long-Term Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 123-140.
    4. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    5. Nic Rivers & Mark Jaccard, 2005. "Combining Top-Down and Bottom-Up Approaches to Energy-Economy Modeling Using Discrete Choice Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 83-106.
    6. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
    7. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    8. Gritsevskyi, Andrii & Nakicenovi, Nebojsa, 2000. "Modeling uncertainty of induced technological change," Energy Policy, Elsevier, vol. 28(13), pages 907-921, November.
    9. Ma, Tieju & Nakamori, Yoshiteru, 2009. "Modeling technological change in energy systems – From optimization to agent-based modeling," Energy, Elsevier, vol. 34(7), pages 873-879.
    10. Clarke, Leon & Weyant, John & Edmonds, Jae, 2008. "On the sources of technological change: What do the models assume," Energy Economics, Elsevier, vol. 30(2), pages 409-424, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lsg:lsgwps:wp32. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (The GRI Administration). General contact details of provider: http://edirc.repec.org/data/grlseuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.