IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Growth dynamics of energy technologies: using historical patterns to validate low carbon scenarios

  • Charlie Wilson:
Registered author(s):

    Historical growth dynamics of energy technologies reveal a consistent relationship between the extent to which a technology�s installed capacity grows and the time duration of that growth. This extent � duration relationship is remarkably consistent across both supply-side and demand-side technologies, and both old and new energy technologies. Consequently, it can be used as a means of validating future scenarios of energy technology growth under carbon constraints. This validation methodology is tested on the extents and durations of growth for a range of low carbon technologies in scenarios generated by the MESSAGE energy system model which has been widely used by the IPCC. The key finding is that low carbon technology growth in the scenarios appears generally conservative relative to what has been evidenced historically. This is counterintuitive given the extremely rapid growth rates of certain low carbon technologies under tight carbon constraints. Reasons for the apparent scenario conservatism are explored. Parametric conservatism in the underlying energy system model seems the most likely explanation.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/2010/12/wp32_growth-dynamics-low-carbon.pdf
    Download Restriction: no

    Paper provided by Grantham Research Institute on Climate Change and the Environment in its series GRI Working Papers with number 32.

    as
    in new window

    Length:
    Date of creation: Dec 2010
    Date of revision:
    Handle: RePEc:lsg:lsgwps:wp32
    Contact details of provider: Postal: Houghton Street, London WC2A 2AE
    Phone: +44 (020) 7405 7686
    Web page: http://www.lse.ac.uk/grantham.

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Shilpa Rao, Ilkka Keppo and Keywan Riahi, 2006. "Importance of Technological Change and Spillovers in Long-Term Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 123-140.
    2. Gritsevskyi, Andrii & Nakicenovi, Nebojsa, 2000. "Modeling uncertainty of induced technological change," Energy Policy, Elsevier, vol. 28(13), pages 907-921, November.
    3. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
    4. Ma, Tieju & Nakamori, Yoshiteru, 2009. "Modeling technological change in energy systems – From optimization to agent-based modeling," Energy, Elsevier, vol. 34(7), pages 873-879.
    5. Utterback, James M & Abernathy, William J, 1975. "A dynamic model of process and product innovation," Omega, Elsevier, vol. 3(6), pages 639-656, December.
    6. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    7. Nic Rivers & Mark Jaccard, 2005. "Combining Top-Down and Bottom-Up Approaches to Energy-Economy Modeling Using Discrete Choice Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 83-106.
    8. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-66, February.
    9. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    10. Clarke, Leon & Weyant, John & Edmonds, Jae, 2008. "On the sources of technological change: What do the models assume," Energy Economics, Elsevier, vol. 30(2), pages 409-424, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:lsg:lsgwps:wp32. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (The GRI Administration)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.