IDEAS home Printed from https://ideas.repec.org/p/amz/wpaper/2018-08.html

Dead on arrival? Implicit stranded assets in leading IAM scenarios

Author

Listed:
  • Hepburn, Cameron
  • Pfeiffer, Alexander
  • Vogt-Schilb, Adrien
  • J. Tulloch, Daniel

Abstract

While it is acknowledged that asset stranding could jeopardize the political feasibility of climate policies, the amount of stranded assets is rarely made explicit in most decarbonization pathways. This paper introduces a novel method that extracts, for every given energy sector transition scenario, the implicit amount of new power generation capacity that is added every year, and the required amount of stranding if this scenario is to be in line with its projected generation mix. We show that most scenarios that stabilize warming to below 1.5-2°C require a high level of asset stranding, not only for future capacity additions, but also for already existing and currently planned generators. Such stranding affects China and the U.S. most. The amount of future fossil fuel capacity stranding required, in line with 1.5-2°C warming, has increased by 21% between 2005 and 2015. We discuss implications for investors and policy makers.

Suggested Citation

  • Hepburn, Cameron & Pfeiffer, Alexander & Vogt-Schilb, Adrien & J. Tulloch, Daniel, 2018. "Dead on arrival? Implicit stranded assets in leading IAM scenarios," INET Oxford Working Papers 2018-08, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
  • Handle: RePEc:amz:wpaper:2018-08
    as

    Download full text from publisher

    File URL: https://oms-inet.files.svdcdn.com/production/files/Pfeiffer_et_al__20172C_INET_WP-Dead_on_arrival_v3_7_clean.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guivarch, Céline & Hallegatte, Stéphane & Crassous, Renaud, 2009. "The resilience of the Indian economy to rising oil prices as a validation test for a global energy-environment-economy CGE model," Energy Policy, Elsevier, vol. 37(11), pages 4259-4266, November.
    2. Sugiyama, Masahiro, 2012. "Climate change mitigation and electrification," Energy Policy, Elsevier, vol. 44(C), pages 464-468.
    3. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
    4. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
    5. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    6. Martin L. Weitzman, 2013. "Tail-Hedge Discounting and the Social Cost of Carbon," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 873-882, September.
    7. Gunnar Luderer & Valentina Bosetti & Michael Jakob & Marian Leimbach & Jan Steckel & Henri Waisman & Ottmar Edenhofer, 2012. "The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison," Climatic Change, Springer, vol. 114(1), pages 9-37, September.
    8. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    9. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    10. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    11. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    12. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
    13. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    14. Joeri Rogelj & Gunnar Luderer & Robert C. Pietzcker & Elmar Kriegler & Michiel Schaeffer & Volker Krey & Keywan Riahi, 2015. "Energy system transformations for limiting end-of-century warming to below 1.5 °C," Nature Climate Change, Nature, vol. 5(6), pages 519-527, June.
    15. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    16. Marshall Burke & John Dykema & David B. Lobell & Edward Miguel & Shanker Satyanath, 2015. "Incorporating Climate Uncertainty into Estimates of Climate Change Impacts," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 461-471, May.
    17. Gokul C. Iyer & Leon E. Clarke & James A. Edmonds & Brian P. Flannery & Nathan E. Hultman & Haewon C. McJeon & David G. Victor, 2015. "Improved representation of investment decisions in assessments of CO2 mitigation," Nature Climate Change, Nature, vol. 5(5), pages 436-440, May.
    18. Johnson, Nils & Krey, Volker & McCollum, David L. & Rao, Shilpa & Riahi, Keywan & Rogelj, Joeri, 2015. "Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 89-102.
    19. Robert S. Pindyck, 2017. "The Use and Misuse of Models for Climate Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 100-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    2. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    3. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    4. World Bank Group, 2018. "Strategic Use of Climate Finance to Maximize Climate Action," World Bank Publications - Reports 30475, The World Bank Group.
    5. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    6. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    7. Michael Grubb & Jean-Francois Mercure & Pablo Salas & Rutger-Jan Lange & Ida Sognnaes, 2018. "Systems Innovation, Inertia and Pliability: A mathematical exploration with implications for climate change abatement," Working Papers EPRG 1808, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Pindyck, Robert S., 2019. "The social cost of carbon revisited," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 140-160.
    9. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    10. De Juan Fernández, Aránzazu & Poncela, Pilar & Rodríguez Caballero, Carlos Vladimir & Ruiz Ortega, Esther, 2022. "Economic activity and climate change," DES - Working Papers. Statistics and Econometrics. WS 35044, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    12. Yangsiyu Lu & Francois Cohen & Stephen M. Smith & Alexander Pfeiffer, 2022. "Plant conversions and abatement technologies cannot prevent stranding of power plant assets in 2 °C scenarios," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    14. Newbery, David, 2018. "Policies for decarbonizing a liberalized power sector," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-24.
    15. Alain Quinet, 2019. "What Value Do We Attach to Climate Action? [Quelle valeur donner à l’action pour le climat ?]," Post-Print hal-05304423, HAL.
    16. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    17. Weyant John, 2014. "Integrated assessment of climate change: state of the literature," Journal of Benefit-Cost Analysis, De Gruyter, vol. 5(3), pages 377-409, December.
    18. Peter von zur Muehlen, 2022. "Prices and Taxes in a Ramsey Climate Policy Model under Heterogeneous Beliefs and Ambiguity," Economies, MDPI, vol. 10(10), pages 1-56, October.
    19. Mook Bangalore & Stephane Hallegatte & Laura Bonzanigo & Tamaro Kane & Marianne Fay & Ulf Narloch & David Treguer & Julie Rozenberg & Adrien Vogt-Schilb, 2016. "Shock Waves," World Bank Publications - Books, The World Bank Group, number 22787, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:amz:wpaper:2018-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: INET Oxford admin team (email available below). General contact details of provider: https://edirc.repec.org/data/inoxfuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.