IDEAS home Printed from https://ideas.repec.org/p/zbw/cawmdp/99.html
   My bibliography  Save this paper

Drivers of energy efficiency in German manufacturing: A firm-level stochastic frontier analysis

Author

Listed:
  • Lutz, Benjamin Johannes
  • Massier, Philipp
  • Sommerfeld, Katrin
  • Löschel, Andreas

Abstract

Increasing energy efficiency is one of the main goals in current German energy and climate policies. We study the determinants of energy efficiency in the German manufacturing sector based on official firm-level production census data. By means of a stochastic frontier analysis, we estimate the cost-minimizing energy demand function at the two-digit industry level using firm-level heterogeneity. Apart from the identification of the determinants of the energy demand function, we also analyze potential drivers of energy efficiency. Our results suggest that there is still potential to increase energy efficiency in most industries of the German manufacturing sector. Furthermore, we find that in most industries exporting and innovating firms as well as those investing in environmental protection measures are more energy efficient than their counterparts. In contrast, firms which are regulated by the European Union Emissions Trading System are mostly less energy efficient than non-regulated firms.

Suggested Citation

  • Lutz, Benjamin Johannes & Massier, Philipp & Sommerfeld, Katrin & Löschel, Andreas, 2017. "Drivers of energy efficiency in German manufacturing: A firm-level stochastic frontier analysis," CAWM Discussion Papers 99, University of Münster, Münster Center for Economic Policy (MEP).
  • Handle: RePEc:zbw:cawmdp:99
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/173351/1/1011162334.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Petrick, Sebastian & Wagner, Ulrich J., 2014. "The impact of carbon trading on industry: Evidence from German manufacturing firms," Kiel Working Papers 1912, Kiel Institute for the World Economy (IfW Kiel).
    2. Massimo Filippini & William Greene, 2016. "Persistent and transient productive inefficiency: a maximum simulated likelihood approach," Journal of Productivity Analysis, Springer, vol. 45(2), pages 187-196, April.
    3. Pedro Linares & Xavier Labandeira, 2010. "Energy Efficiency: Economics And Policy," Journal of Economic Surveys, Wiley Blackwell, vol. 24(3), pages 573-592, July.
    4. Boyd, Gale A. & McClelland, John D., 1999. "The Impact of Environmental Constraints on Productivity Improvement in Integrated Paper Plants," Journal of Environmental Economics and Management, Elsevier, vol. 38(2), pages 121-142, September.
    5. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    6. Svetlana Batrakova & Ronald Davies, 2012. "Is there an environmental benefit to being an exporter? Evidence from firm-level data," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 148(3), pages 449-474, September.
    7. Massimo Filippini & Lester C. Hunt, 2011. "Energy Demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 59-80.
    8. Gale A. Boyd, 2008. "Estimating Plant Level Energy Efficiency with a Stochastic Frontier," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 23-44.
    9. Bardazzi, Rossella & Oropallo, Filippo & Pazienza, Maria Grazia, 2015. "Do manufacturing firms react to energy prices? Evidence from Italy," Energy Economics, Elsevier, vol. 49(C), pages 168-181.
    10. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    11. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 2008. "The Measurement of Productive Efficiency and Productivity Growth," OUP Catalogue, Oxford University Press, number 9780195183528.
    12. de Miguel, Carlos & Labandeira, Xavier & Löschel, Andreas, 2015. "Frontiers in the economics of energy efficiency," Energy Economics, Elsevier, vol. 52(S1), pages 1-4.
    13. Petrick Sebastian & Rehdanz Katrin & Wagner Ulrich J., 2011. "Energy Use Patterns in German Industry: Evidence from Plant-level Data," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(3), pages 379-414, June.
    14. Löschel, Andreas & Lutz, Benjamin Johannes & Managi, Shunsuke, 2016. "The impacts of the EU ETS on efficiency: An empirical analyses for German manufacturing firms," ZEW Discussion Papers 16-089, ZEW - Leibniz Centre for European Economic Research.
    15. Haller, Stefanie A. & Hyland, Marie, 2014. "Capital–energy substitution: Evidence from a panel of Irish manufacturing firms," Energy Economics, Elsevier, vol. 45(C), pages 501-510.
    16. Zhou, P. & Ang, B.W. & Zhou, D.Q., 2012. "Measuring economy-wide energy efficiency performance: A parametric frontier approach," Applied Energy, Elsevier, vol. 90(1), pages 196-200.
    17. Boyd, Gale A. & Lee, Jonathan M., 2019. "Measuring plant level energy efficiency and technical change in the U.S. metal-based durable manufacturing sector using stochastic frontier analysis," Energy Economics, Elsevier, vol. 81(C), pages 159-174.
    18. Popp, David C., 2001. "The effect of new technology on energy consumption," Resource and Energy Economics, Elsevier, vol. 23(3), pages 215-239, July.
    19. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    20. Bjorner, Thomas Bue & Togeby, Mikael & Jensen, Henrik Holm, 2001. "Industrial companies' demand for electricity: evidence from a micropanel," Energy Economics, Elsevier, vol. 23(5), pages 595-617, September.
    21. Ama Baafra Abeberese, 2017. "Electricity Cost and Firm Performance: Evidence from India," The Review of Economics and Statistics, MIT Press, vol. 99(5), pages 839-852, December.
    22. Hottenrott, Hanna & Rexhäuser, Sascha & Veugelers, Reinhilde, 2016. "Organisational change and the productivity effects of green technology adoption," Resource and Energy Economics, Elsevier, vol. 43(C), pages 172-194.
    23. Roy, Jayjit & Yasar, Mahmut, 2015. "Energy efficiency and exporting: Evidence from firm-level data," Energy Economics, Elsevier, vol. 52(PA), pages 127-135.
    24. Sang V Nguyen & Mary L Streitwieser, 1997. "Capital-Energy Substitution Revisted: New Evidence From Micro Data," Working Papers 97-4, Center for Economic Studies, U.S. Census Bureau.
    25. Alan D. Woodland, 1993. "A Micro-Econometric Analysis of the Industrial Demand for Energy in NSW," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 57-90.
    26. Joltreau, Eugénie & Sommerfeld, Katrin, 2016. "Why does emissions trading under the EU ETS not affect firms' competitiveness? Empirical findings from the literature," ZEW Discussion Papers 16-062, ZEW - Leibniz Centre for European Economic Research.
    27. Ralf Martin & Mirabelle Muûls & Ulrich J. Wagner, 2016. "The Impact of the European Union Emissions Trading Scheme on Regulated Firms: What Is the Evidence after Ten Years?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 129-148.
    28. Roger Fouquet (ed.), 2013. "Handbook on Energy and Climate Change," Books, Edward Elgar Publishing, number 14429.
    29. Joachim Wagner, 2016. "International Trade and Firm Performance: A Survey of Empirical Studies since 2006," World Scientific Book Chapters, in: Microeconometrics of International Trade, chapter 2, pages 43-87, World Scientific Publishing Co. Pte. Ltd..
    30. Cole, Matthew A. & Elliott, Robert J.R. & Strobl, Eric, 2008. "The environmental performance of firms: The role of foreign ownership, training, and experience," Ecological Economics, Elsevier, vol. 65(3), pages 538-546, April.
    31. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    32. Filippini, Massimo & Hunt, Lester C. & Zorić, Jelena, 2014. "Impact of energy policy instruments on the estimated level of underlying energy efficiency in the EU residential sector," Energy Policy, Elsevier, vol. 69(C), pages 73-81.
    33. Kleijweg, A. & Van Leeuwen, G. & Huigen, R. & Zeelenberg, K., 1989. "The Demand For Energy In Dutch Manufacturing; Astudy Using Panel Data Of Individual Firms 1978-1986," Papers 8906, NEUHUYS - RESEARCH INSTITUTE FOR SMALL AND MEDIUM.
    34. Joanne Evans & Massimo Filippini & Lester C. Hunt, 2013. "The contribution of energy efficiency towards meeting CO2 targets," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 8, pages 175-223, Edward Elgar Publishing.
    35. Arnberg, Soren & Bjorner, Thomas Bue, 2007. "Substitution between energy, capital and labour within industrial companies: A micro panel data analysis," Resource and Energy Economics, Elsevier, vol. 29(2), pages 122-136, May.
    36. Dardati, Evangelina & Saygili, Meryem, 2012. "Multinationals and environmental regulation: are foreign firms harmful?," Environment and Development Economics, Cambridge University Press, vol. 17(2), pages 163-186, April.
    37. Lutz, Benjamin Johannes, 2016. "Emissions trading and productivity: Firm-level evidence from German manufacturing," ZEW Discussion Papers 16-067, ZEW - Leibniz Centre for European Economic Research.
    38. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gale A. Boyd and Jonathan M. Lee, 2020. "Relative Effectiveness of Energy Efficiency Programs versus Market Based Climate Policies in the Chemical Industry," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 39-62.
    2. Di Maria, Corrado & Zarkovic, Maja & Hintermann, Beat, 2020. "Are Emissions Trading Schemes Cost-effective?," Working papers 2020/13, Faculty of Business and Economics - University of Basel.
    3. repec:diw:diwwpp:dp1813 is not listed on IDEAS
    4. Zarkovic, Maja, 2020. "Cap-and-trade and produce at least cost? Investigating firm behaviour in the EU ETS," Working papers 2020/12, Faculty of Business and Economics - University of Basel.
    5. Piao, Zhefan & Miao, Binbin & Zheng, Zihan & Xu, Feng, 2022. "Technological innovation efficiency and its impact factors: An investigation of China's listed energy companies," Energy Economics, Elsevier, vol. 112(C).
    6. Macharia, Kenneth Kigundu & Gathiaka, John Kamau & Ngui, Dianah, 2022. "Energy efficiency in the Kenyan manufacturing sector," Energy Policy, Elsevier, vol. 161(C).
    7. Djula Borozan & Luka Borozan, 2019. "Examining the Industrial Energy Consumption Determinants: A Panel Bayesian Model Averaging Approach," Energies, MDPI, vol. 13(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filippini, Massimo & Hunt, Lester C., 2015. "Measurement of energy efficiency based on economic foundations," Energy Economics, Elsevier, vol. 52(S1), pages 5-16.
    2. Mark A. Andor & David H. Bernstein & Stephan Sommer, 2021. "Determining the efficiency of residential electricity consumption," Empirical Economics, Springer, vol. 60(6), pages 2897-2923, June.
    3. Lester C. Hunt & Paraskevas Kipouros, 2023. "Energy Demand and Energy Efficiency in Developing Countries," Energies, MDPI, vol. 16(3), pages 1-26, January.
    4. Liu, Fengqin & Sim, Jae-yeon & Sun, Huaping & Edziah, Bless Kofi & Adom, Philip Kofi & Song, Shunfeng, 2023. "Assessing the role of economic globalization on energy efficiency: Evidence from a global perspective," China Economic Review, Elsevier, vol. 77(C).
    5. Otsuka, Akihiro, 2023. "Industrial electricity consumption efficiency and energy policy in Japan," Utilities Policy, Elsevier, vol. 81(C).
    6. Manuel Llorca & José Baños & José Somoza & Pelayo Arbués, 2017. "A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    7. Marin, Giovanni & Palma, Alessandro, 2017. "Technology invention and adoption in residential energy consumption," Energy Economics, Elsevier, vol. 66(C), pages 85-98.
    8. Dolšak, Janez & Hrovatin, Nevenka & Zorić, Jelena, 2022. "Estimating the efficiency in overall energy consumption: Evidence from Slovenian household-level data," Energy Economics, Elsevier, vol. 114(C).
    9. Macharia, Kenneth Kigundu & Gathiaka, John Kamau & Ngui, Dianah, 2022. "Energy efficiency in the Kenyan manufacturing sector," Energy Policy, Elsevier, vol. 161(C).
    10. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    11. Löschel, Andreas & Lutz, Benjamin Johannes & Managi, Shunsuke, 2019. "The impacts of the EU ETS on efficiency and economic performance – An empirical analyses for German manufacturing firms," Resource and Energy Economics, Elsevier, vol. 56(C), pages 71-95.
    12. Gale A. Boyd & Jonathan M. Lee, 2020. "Relative Effectiveness of Energy Efficiency Programs versus Market Based Climate Policies in the Chemical Industry," The Energy Journal, , vol. 41(3), pages 39-62, May.
    13. Massimo Filippini & Lester C. Hunt, 2013. "'Underlying Energy Efficiency' in the US," CER-ETH Economics working paper series 13/181, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    14. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    15. Dechezleprêtre, Antoine & Kozluk, Tomasz & Kruse, Tobias & Nachtigall, Daniel & de Serres, Alain, 2019. "Do Environmental and Economic Performance Go Together? A Review of Micro-level Empirical Evidence from the Past Decade or So," International Review of Environmental and Resource Economics, now publishers, vol. 13(1-2), pages 1-118, April.
    16. Giovanni Marin & Alessandro Palma, 2015. "Technology Invention and Diffusion in Residential Energy Consumption. A Stochastic Frontier Approach," Working Papers 2015.104, Fondazione Eni Enrico Mattei.
    17. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    18. Yonghan Jeon & Jongoh Nam, 2023. "Estimating Energy Efficiency and Energy Saving Potential in the Republic of Korea’s Offshore Fisheries," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
    19. Sun, Huaping & Edziah, Bless Kofi & Kporsu, Anthony Kwaku & Sarkodie, Samuel Asumadu & Taghizadeh-Hesary, Farhad, 2021. "Energy efficiency: The role of technological innovation and knowledge spillover," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    20. Amjadi, Golnaz & Lundgren, Tommy, 2022. "Is industrial energy inefficiency transient or persistent? Evidence from Swedish manufacturing," Applied Energy, Elsevier, vol. 309(C).

    More about this item

    Keywords

    Stochastic Frontier Analysis; Stochastic Demand Frontier; Energy Efficiency; Climate Policy; Manufacturing;
    All these keywords.

    JEL classification:

    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L60 - Industrial Organization - - Industry Studies: Manufacturing - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cawmdp:99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/camuede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.