IDEAS home Printed from https://ideas.repec.org/p/ven/wpaper/2007_32.html
   My bibliography  Save this paper

Business Cycle Analysis with Multivariate Markov Switching Models

Author

Listed:
  • Monica Billio

    () (Department of Economics, University Of Venice C� Foscari)

  • Jacques Anas

    (Coe Rexecode, Paris)

  • Laurent Ferrara

    (Banque de Frances)

  • Marco Lo Duca

    (European Central Bank)

Abstract

The class of Markov switching models can be extended in two main directions in a multivariate framework. In the first approach, the switching dynamics are introduced by way of a common latent factor. In the second approach a VAR model with parameters depending on one common Markov chain is considered (MSVAR). We will extend the MSVAR approach allowing for the presence of specific Markov chains in each equation of the VAR (MMSVAR). In the MMSVAR approach we also explore the introduction of correlated Markov chains which allow us to evaluate the relationships among phases in different economies or sectors and introduce causality relationships, which allow a more parsimonious representation. We apply our model to study the relationship between cyclical phases of the industrial production in the US and Euro zone. Moreover, we construct a MMS model to explore the cyclical relationship between the Euro zone industrial production and the industrial component of the European Sentiment Index.

Suggested Citation

  • Monica Billio & Jacques Anas & Laurent Ferrara & Marco Lo Duca, 2007. "Business Cycle Analysis with Multivariate Markov Switching Models," Working Papers 2007_32, Department of Economics, University of Venice "Ca' Foscari".
  • Handle: RePEc:ven:wpaper:2007_32
    as

    Download full text from publisher

    File URL: http://www.unive.it/pag/fileadmin/user_upload/dipartimenti/economia/doc/Pubblicazioni_scientifiche/working_papers/2007/WP_DSE_AAVV_billio_32_07.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Michael ARTIS & Massimiliano MARCELLINO & Tommaso PROIETTI, 2002. "Dating the Euro Area Business Cycle," Economics Working Papers ECO2002/24, European University Institute.
    2. Monica Billio & Alain Monfort & Christian P, Robert, 1998. "The Simulated Likelihood Ratio (SLR) Method," Working Papers 98-21, Center for Research in Economics and Statistics.
    3. Boldin Michael D., 1996. "A Check on the Robustness of Hamilton's Markov Switching Model Approach to the Economic Analysis of the Business Cycle," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(1), pages 1-14, April.
    4. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    5. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    6. Robert Breunig & Serinah Najarian & Adrian Pagan, 2003. "Specification Testing of Markov Switching Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 703-725, December.
    7. Monica Billio & Jacques Anas & Laurent Ferrara & Marco Lo Duca, 2007. "A turning point chronology for the Euro-zone," Working Papers 2007_33, Department of Economics, University of Venice "Ca' Foscari".
    8. Anas, Jacques & Ferrara, Laurent, 2002. "Un indicateur d'entrée et sortie de récession: application aux Etats-Unis
      [A start-end recession index: Application for United-States]
      ," MPRA Paper 4043, University Library of Munich, Germany.
    9. Clements, Michael P & Krolzig, Hans-Martin, 2003. "Business Cycle Asymmetries: Characterization and Testing Based on Markov-Switching Autoregressions," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 196-211, January.
    10. Jacques Anas & Laurent Ferrara, 2004. "Detecting Cyclical Turning Points: The ABCD Approach and Two Probabilistic Indicators," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2004(2), pages 193-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leiva-Leon, Danilo, 2013. "A New Approach to Infer Changes in the Synchronization of Business Cycle Phases," MPRA Paper 54452, University Library of Munich, Germany.
    2. Gallo, Giampiero M. & Otranto, Edoardo, 2008. "Volatility spillovers, interdependence and comovements: A Markov Switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3011-3026, February.
    3. repec:hal:journl:halshs-00423890 is not listed on IDEAS
    4. Danilo Leiva-Leon, 2017. "Measuring Business Cycles Intra-Synchronization in US: A Regime-switching Interdependence Framework," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 513-545, August.
    5. Monica Billio & Anna Petronevich, 2017. "Dynamical Interaction Between Financial and Business Cycles," Working Papers 2017:24, Department of Economics, University of Venice "Ca' Foscari".
    6. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    7. Barsoum, Fady & Stankiewicz, Sandra, 2015. "Forecasting GDP growth using mixed-frequency models with switching regimes," International Journal of Forecasting, Elsevier, vol. 31(1), pages 33-50.

    More about this item

    Keywords

    Economic cycles; Multivariate models; Markov switching models; Common latent factors; Causality; Euro-zone;

    JEL classification:

    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2007_32. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Geraldine Ludbrook). General contact details of provider: http://edirc.repec.org/data/dsvenit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.