IDEAS home Printed from
   My bibliography  Save this paper

Proxy-SVAR as a Bridge for Identification with Higher Frequency Data


  • Andrea Giovanni Gazzani

    (Bank of Italy)

  • Alejandro Vicondoa

    (Pontificia Universidad Catolica de Chile)


High frequency identification around key events has recently solved many puzzles in empirical macroeconomics. This paper proposes a novel methodology, the Bridge Proxy-SVAR, to identify structural shocks in Vector Autoregressions (VARs) by exploiting high frequency information in a more general framework. Our methodology comprises three steps: (I) identify the structural shocks of interest in high frequency systems; (II) aggregate the series of high frequency shocks at a lower frequency employing the correct filter; (III) use the aggregated series of shocks as a proxy for the corresponding structural shock in lower frequency VARs. Both analytically and through simulations, we show that our methodology significantly improves the identification of VARs, recovering the true impact effect. In a first empirical application on US data, we show that financial shocks identified at daily frequency produce unambiguously macroeconomic effects consistent with a demand shock. In a second application, we identify U.S. monetary policy shocks that are highly correlated with the series of monetary policy surprises but, contrary to the latter ones, are invertible and so valid external instruments for low-frequency VARs.

Suggested Citation

  • Andrea Giovanni Gazzani & Alejandro Vicondoa, 2019. "Proxy-SVAR as a Bridge for Identification with Higher Frequency Data," 2019 Meeting Papers 855, Society for Economic Dynamics.
  • Handle: RePEc:red:sed019:855

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Silvia Miranda-Agrippino & Giovanni Ricco, 2021. "The Transmission of Monetary Policy Shocks," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(3), pages 74-107, July.
    2. Gouriéroux, Christian & Monfort, Alain & Renne, Jean-Paul, 2017. "Statistical inference for independent component analysis: Application to structural VAR models," Journal of Econometrics, Elsevier, vol. 196(1), pages 111-126.
    3. Juan Antolín-Díaz & Juan F. Rubio-Ramírez, 2018. "Narrative Sign Restrictions for SVARs," American Economic Review, American Economic Association, vol. 108(10), pages 2802-2829, October.
    4. Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Identification with external instruments in structural VARs under partial invertibility," Sciences Po publications 24, Sciences Po.
    5. Abbate, Angela & Eickmeier, Sandra & Prieto, Esteban, 2016. "Financial shocks and inflation dynamics," Discussion Papers 41/2016, Deutsche Bundesbank.
    6. Hendry, David F., 1992. "An econometric analysis of TV advertising expenditure in the United Kingdom," Journal of Policy Modeling, Elsevier, vol. 14(3), pages 281-311, June.
    7. Andrea Carriero & Haroon Mumtaz & Konstantinos Theodoridis & Angeliki Theophilopoulou, 2015. "The Impact of Uncertainty Shocks under Measurement Error: A Proxy SVAR Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(6), pages 1223-1238, September.
    8. Zadrozny, Peter, 1988. "Analytic Derivatives for Estimation of Discrete-Time,," Econometrica, Econometric Society, vol. 56(2), pages 467-472, March.
    9. Michele Piffer & Maximilian Podstawski, 2018. "Identifying Uncertainty Shocks Using the Price of Gold," Economic Journal, Royal Economic Society, vol. 128(616), pages 3266-3284, December.
    10. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
    11. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
    12. Dario Caldara & Edward Herbst, 2019. "Monetary Policy, Real Activity, and Credit Spreads: Evidence from Bayesian Proxy SVARs," American Economic Journal: Macroeconomics, American Economic Association, vol. 11(1), pages 157-192, January.
    13. Juan Antolin-Diaz & Juan F. Rubio-Ramirez, 2016. "Narrative Sign Restrictions for SVARs," FRB Atlanta Working Paper 2016-16, Federal Reserve Bank of Atlanta.
    14. Piergiorgio Alessandri & Andrea Gazzani & Alejandro Vicondoa, 2020. "Uncertainty matters: evidence from a high-frequency identification strategy," Temi di discussione (Economic working papers) 1284, Bank of Italy, Economic Research and International Relations Area.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Brautzsch, Hans-Ulrich & Dany-Knedlik, Geraldine & Drygalla, Andrej & Gebauer, Stefan & Holtemöller, Oliver & Kämpfe, Martina & Lindner, Axel & Michelsen, Claus & Rieth, Malte & Schlaak, Thore, 2019. "Kurzfristige ökonomische Effekte eines "Brexit" auf die deutsche Wirtschaft: Studie im Auftrag des Bundesministeriums für Wirtschaft und Energie," IWH Online 3/2019, Halle Institute for Economic Research (IWH).
    2. Anderson, Gareth & Cesa-Bianchi, Ambrogio, 2020. "Crossing the credit channel: credit spreads and firm heterogeneity," Bank of England working papers 854, Bank of England.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habib, Maurizio Michael & Stracca, Livio & Venditti, Fabrizio, 2020. "The fundamentals of safe assets," Journal of International Money and Finance, Elsevier, vol. 102(C).
    2. Cascaldi-Garcia, Danilo & Vukotic, Marija, 2019. "Patent-Based News Shocks," The Warwick Economics Research Paper Series (TWERPS) 1225, University of Warwick, Department of Economics.
    3. Mirela Miescu & Haroon Mumtaz, 2019. "Proxy structural vector autoregressions, informational sufficiency and the role of monetary policy," Working Papers 280730188, Lancaster University Management School, Economics Department.
    4. Caggiano, Giovanni & Castelnuovo, Efrem & Delrio, Silvia & Kima, Richard, 2021. "Financial uncertainty and real activity: The good, the bad, and the ugly," European Economic Review, Elsevier, vol. 136(C).
    5. Andrea Gazzani & Alejandro Vicondoa, 2020. "Bridge Proxy-SVAR: estimating the macroeconomic effects of shocks identified at high-frequency," Temi di discussione (Economic working papers) 1274, Bank of Italy, Economic Research and International Relations Area.
    6. Efrem Castelnuovo, 2019. "Yield Curve and Financial Uncertainty: Evidence Based on US Data," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 52(3), pages 323-335, September.
    7. Piergiorgio Alessandri & Andrea Gazzani & Alejandro Vicondoa, 2021. "The real effects of financial uncertainty shocks: A daily identification approach," Working Papers 61, Red Nacional de Investigadores en Economía (RedNIE).
    8. Ettmeier, Stephanie & Kriwoluzky, Alexander, 2019. "Same, but different? Testing monetary policy shock measures," Economics Letters, Elsevier, vol. 184(C).
    9. Martin Bruns, 2019. "Proxy VAR models in a data-rich environment," University of East Anglia School of Economics Working Paper Series 2019-03, School of Economics, University of East Anglia, Norwich, UK..
    10. Hacioglu Hoke, Sinem, 2019. "Macroeconomic effects of political risk shocks," Bank of England working papers 841, Bank of England.
    11. Budnik, Katarzyna & Rünstler, Gerhard, 2020. "Identifying SVARs from sparse narrative instruments: dynamic effects of U.S. macroprudential policies," Working Paper Series 2353, European Central Bank.
    12. Thorsten Drautzburg, 2020. "A narrative approach to a fiscal DSGE model," Quantitative Economics, Econometric Society, vol. 11(2), pages 801-837, May.
    13. Herwartz, Helmut & Rohloff, Hannes & Wang, Shu, 2020. "Proxy SVAR identification of monetary policy shocks: MonteCarlo evidence and insights for the US," Center for European, Governance and Economic Development Research Discussion Papers 404, University of Goettingen, Department of Economics.
    14. G. Angelini & L. Fanelli, 2018. "Identification and estimation issues in Structural Vector Autoregressions with external instruments," Working Papers wp1122, Dipartimento Scienze Economiche, Universita' di Bologna.
    15. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    16. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    17. Lorenzo Bencivelli & Massimiliano Marcellino & Gianluca Moretti, 2017. "Forecasting economic activity by Bayesian bridge model averaging," Empirical Economics, Springer, vol. 53(1), pages 21-40, August.
    18. Meinen, Philipp & Roehe, Oke, 2018. "To sign or not to sign? On the response of prices to financial and uncertainty shocks," Economics Letters, Elsevier, vol. 171(C), pages 189-192.
    19. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    20. Rivolta, Giulia & Trecroci, Carmine, 2020. "Measuring the effects of U.S. uncertainty and monetary conditions on EMEs' macroeconomic dynamics," MPRA Paper 99403, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:red:sed019:855. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Zimmermann (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.