IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/126675.html
   My bibliography  Save this paper

This Candidate is [MASK]. Prompt-based Sentiment Extraction and Reference Letters

Author

Listed:
  • Slonimczyk, Fabian

Abstract

I propose a relatively simple way to deploy pre-trained large language models (LLMs) in order to extract sentiment and other useful features from text data. The method, which I refer to as prompt-based sentiment extraction, offers multiple advantages over other methods used in economics and finance. In particular, it accepts the text input as is (without preprocessing) and produces a sentiment score that has a probability interpretation. Unlike other LLM-based approaches, it does not require any fine-tuning or labeled data. I apply my prompt-based strategy to a hand-collected corpus of confidential reference letters (RLs). I show that the sentiment contents of RLs are clearly reflected in job market outcomes. Candidates with higher average sentiment in their RLs perform markedly better regardless of the measure of success chosen. Moreover, I show that sentiment dispersion among letter writers negatively affects the job market candidate’s performance. I compare my sentiment extraction approach to other commonly used methods for sentiment analysis: ‘bag-of-words’ approaches, fine-tuned language models, and querying advanced chatbots. No other method can fully reproduce the results obtained by prompt-based sentiment extraction. Finally, I slightly modify the method to obtain ‘gendered’ sentiment scores (as in Eberhardt et al., 2023). I show that RLs written for female candidates emphasize ‘grindstone’ personality traits, whereas male candidates’ letters emphasize ‘standout’ traits. These gender differences negatively affect women’s job market outcomes.

Suggested Citation

  • Slonimczyk, Fabian, 2025. "This Candidate is [MASK]. Prompt-based Sentiment Extraction and Reference Letters," MPRA Paper 126675, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:126675
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/126675/1/MPRA_paper_126675.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • J16 - Labor and Demographic Economics - - Demographic Economics - - - Economics of Gender; Non-labor Discrimination
    • M51 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Personnel Economics - - - Firm Employment Decisions; Promotions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:126675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.