Large Language Models: An Applied Econometric Framework
Author
Abstract
Suggested Citation
Note: AP CF CH DAE DEV ED EEE EFG EH LE LS PE POL PR TWP
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Jens Ludwig & Sendhil Mullainathan & Ashesh Rambachan, 2024. "Large Language Models: An Applied Econometric Framework," Papers 2412.07031, arXiv.org, revised Jan 2025.
References listed on IDEAS
- Xinran Li & Peng Ding, 2017. "General Forms of Finite Population Central Limit Theorems with Applications to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1759-1769, October.
- Agrawal, Ajay & McHale, John & Oettl, Alexander, 2024.
"Artificial intelligence and scientific discovery: a model of prioritized search,"
Research Policy, Elsevier, vol. 53(5).
- Ajay K. Agrawal & John McHale & Alexander Oettl, 2023. "Artificial Intelligence and Scientific Discovery: A Model of Prioritized Search," NBER Working Papers 31558, National Bureau of Economic Research, Inc.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Herbert Dawid & Philipp Harting & Hankui Wang & Zhongli Wang & Jiachen Yi, 2025. "Agentic Workflows for Economic Research: Design and Implementation," Papers 2504.09736, arXiv.org.
- Songrun He & Linying Lv & Asaf Manela & Jimmy Wu, 2025. "Chronologically Consistent Large Language Models," Papers 2502.21206, arXiv.org, revised Mar 2025.
- Philippe Goulet Coulombe, 2025. "Ordinary Least Squares as an Attention Mechanism," Papers 2504.09663, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
- Clément de Chaisemartin, 2022.
"Trading-off Bias and Variance in Stratified Experiments and in Staggered Adoption Designs, Under a Boundedness Condition on the Magnitude of the Treatment Effect,"
Working Papers
hal-03873919, HAL.
- Clément de Chaisemartin, 2022. "Trading-off Bias and Variance in Stratified Experiments and in Staggered Adoption Designs, Under a Boundedness Condition on the Magnitude of the Treatment Effect," SciencePo Working papers Main hal-03873919, HAL.
- Clément de Chaisemartin, 2022. "Trading-off Bias and Variance in Stratified Experiments and in Staggered Adoption Designs, Under a Boundedness Condition on the Magnitude of the Treatment Effect," NBER Working Papers 29879, National Bureau of Economic Research, Inc.
- Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Jun 2025.
- Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
- Peter Z. Schochet, 2018. "Design-Based Estimators for Average Treatment Effects for Multi-Armed RCTs," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 568-593, October.
- Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
- Peter Z. Schochet, 2020. "Analyzing Grouped Administrative Data for RCTs Using Design-Based Methods," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 32-57, February.
- Joel A. Middleton, 2021. "Unifying Design-based Inference: On Bounding and Estimating the Variance of any Linear Estimator in any Experimental Design," Papers 2109.09220, arXiv.org.
- Iavor Bojinov & Ashesh Rambachan & Neil Shephard, 2021. "Panel experiments and dynamic causal effects: A finite population perspective," Quantitative Economics, Econometric Society, vol. 12(4), pages 1171-1196, November.
- Anton Korinek & Donghyun Suh, 2024.
"Scenarios for the Transition to AGI,"
NBER Working Papers
32255, National Bureau of Economic Research, Inc.
- Korinek, Anton & Suh, Donghyun, 2024. "Scenarios for the Transition to AGI," CEPR Discussion Papers 18928, C.E.P.R. Discussion Papers.
- Anton Korinek & Donghyun Suh, 2024. "Scenarios for the Transition to AGI," Papers 2403.12107, arXiv.org.
- Dmitry Arkhangelsky & Guido W. Imbens & Lihua Lei & Xiaoman Luo, 2021. "Design-Robust Two-Way-Fixed-Effects Regression For Panel Data," Papers 2107.13737, arXiv.org, revised Mar 2024.
- Ding Peng & Li Xinran & Miratrix Luke W., 2017. "Bridging Finite and Super Population Causal Inference," Journal of Causal Inference, De Gruyter, vol. 5(2), pages 1-8, September.
- Pashley, Nicole E., 2022. "Note on the delta method for finite population inference with applications to causal inference," Statistics & Probability Letters, Elsevier, vol. 188(C).
- Jizhou Liu & Azeem M. Shaikh & Panos Toulis, 2025. "Randomization Inference in Two-Sided Market Experiments," Papers 2504.06215, arXiv.org.
- Peter L. Cohen & Colin B. Fogarty, 2022. "Gaussian prepivoting for finite population causal inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 295-320, April.
- Fu, Tong & Qiu, Zhaoxuan & Yang, Xiangyang & Li, Zijun, 2024. "The impact of artificial intelligence on green technology cycles in China," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
- Glazer Amanda K. & Pimentel Samuel D., 2023. "Robust inference for matching under rolling enrollment," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-19, January.
- Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org, revised Apr 2025.
- Yuchen Hu & Stefan Wager, 2022. "Switchback Experiments under Geometric Mixing," Papers 2209.00197, arXiv.org, revised Apr 2024.
- Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
More about this item
JEL classification:
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-02-03 (Big Data)
- NEP-CMP-2025-02-03 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:33344. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.