IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.09736.html
   My bibliography  Save this paper

Agentic Workflows for Economic Research: Design and Implementation

Author

Listed:
  • Herbert Dawid
  • Philipp Harting
  • Hankui Wang
  • Zhongli Wang
  • Jiachen Yi

Abstract

This paper introduces a methodology based on agentic workflows for economic research that leverages Large Language Models (LLMs) and multimodal AI to enhance research efficiency and reproducibility. Our approach features autonomous and iterative processes covering the entire research lifecycle--from ideation and literature review to economic modeling and data processing, empirical analysis and result interpretation--with strategic human oversight. The workflow architecture comprises specialized agents with clearly defined roles, structured inter-agent communication protocols, systematic error escalation pathways, and adaptive mechanisms that respond to changing research demand. Human-in-the-loop (HITL) checkpoints are strategically integrated to ensure methodological validity and ethical compliance. We demonstrate the practical implementation of our framework using Microsoft's open-source platform, AutoGen, presenting experimental examples that highlight both the current capabilities and future potential of agentic workflows in improving economic research.

Suggested Citation

  • Herbert Dawid & Philipp Harting & Hankui Wang & Zhongli Wang & Jiachen Yi, 2025. "Agentic Workflows for Economic Research: Design and Implementation," Papers 2504.09736, arXiv.org.
  • Handle: RePEc:arx:papers:2504.09736
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.09736
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yiting Chen & Tracy Xiao Liu & You Shan & Songfa Zhong, 2023. "The emergence of economic rationality of GPT," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(51), pages 2316205120-, December.
    2. Philip Brookins & Jason DeBacker, 2024. "Playing games with GPT: What can we learn about a large language model from canonical strategic games?," Economics Bulletin, AccessEcon, vol. 44(1), pages 25-37.
    3. Bauer, Michael & Huber, Daniel & Offner, Eric & Renkel, Marlene & Wilms, Ole, 2024. "Corporate green pledges," IMFS Working Paper Series 214, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    4. Alejandro Lopez-Lira & Yuehua Tang, 2023. "Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models," Papers 2304.07619, arXiv.org, revised Sep 2024.
    5. Jens Ludwig & Sendhil Mullainathan & Ashesh Rambachan, 2024. "Large Language Models: An Applied Econometric Framework," Papers 2412.07031, arXiv.org, revised Jan 2025.
    6. Qianqian Xie & Weiguang Han & Yanzhao Lai & Min Peng & Jimin Huang, 2023. "The Wall Street Neophyte: A Zero-Shot Analysis of ChatGPT Over MultiModal Stock Movement Prediction Challenges," Papers 2304.05351, arXiv.org, revised Apr 2023.
    7. Jeongbin Kim & Matthew Kovach & Kyu-Min Lee & Euncheol Shin & Hector Tzavellas, 2024. "Learning to be Homo Economicus: Can an LLM Learn Preferences from Choice," Papers 2401.07345, arXiv.org.
    8. Xinli Yu & Zheng Chen & Yuan Ling & Shujing Dong & Zongyi Liu & Yanbin Lu, 2023. "Temporal Data Meets LLM -- Explainable Financial Time Series Forecasting," Papers 2306.11025, arXiv.org.
    9. Philippe Lorenz & Karine Perset & Jamie Berryhill, 2023. "Initial policy considerations for generative artificial intelligence," OECD Artificial Intelligence Papers 1, OECD Publishing.
    10. Lezhi Li & Ting-Yu Chang & Hai Wang, 2023. "Multimodal Gen-AI for Fundamental Investment Research," Papers 2401.06164, arXiv.org.
    11. Yi Chen & Hanming Fang & Yi Zhao & Zibo Zhao, 2024. "Recovering Overlooked Information in Categorical Variables with LLMs: An Application to Labor Market Mismatch," NBER Working Papers 32327, National Bureau of Economic Research, Inc.
    12. Baptiste Lefort & Eric Benhamou & Jean-Jacques Ohana & David Saltiel & Beatrice Guez & D Challet, 2024. "Can ChatGPT Compute Trustworthy Sentiment Scores from Bloomberg Market Wraps? [ChatGPT peut-il calculer des scores de sentiment dignes de confiance à partir de Bloomberg Market Wraps ?]," Working Papers hal-04739906, HAL.
    13. Qingjun Li & Shuliang Zhao, 2023. "The Impact of Digital Economy Development on Industrial Restructuring: Evidence from China," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    14. Joshua S. Gans, 2025. "A Quest for AI Knowledge," NBER Working Papers 33566, National Bureau of Economic Research, Inc.
    15. Dowling, Michael & Lucey, Brian, 2023. "ChatGPT for (Finance) research: The Bananarama Conjecture," Finance Research Letters, Elsevier, vol. 53(C).
    16. Leonardo Gambacorta & Han Qiu & Shuo Shan & Daniel M Rees, 2024. "Generative AI and labour productivity: a field experiment on coding," BIS Working Papers 1208, Bank for International Settlements.
    17. Yi Chen & Hanming Fang & Yi Zhao & Zibo Zhao, 2024. "Recovering Overlooked Information in Categorical Variables with LLMs: An Application to Labor Market Mismatch," PIER Working Paper Archive 24-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    18. Marioni, Larissa da Silva & Rincon-Aznar, Ana & Venturini, Francesco, 2024. "Productivity performance, distance to frontier and AI innovation: Firm-level evidence from Europe," Journal of Economic Behavior & Organization, Elsevier, vol. 228(C).
    19. Taejin Park, 2024. "Enhancing Anomaly Detection in Financial Markets with an LLM-based Multi-Agent Framework," Papers 2403.19735, arXiv.org.
    20. Zihan Chen & Lei Nico Zheng & Cheng Lu & Jialu Yuan & Di Zhu, 2023. "ChatGPT Informed Graph Neural Network for Stock Movement Prediction," Papers 2306.03763, arXiv.org, revised Sep 2023.
    21. Matteo Tranchero & Cecil-Francis Brenninkmeijer & Arul Murugan & Abhishek Nagaraj, 2024. "Theorizing with Large Language Models," NBER Working Papers 33033, National Bureau of Economic Research, Inc.
    22. Susan Athey, 2025. "Presidential Address: The Economist as Designer in the Innovation Process for Socially Impactful Digital Products," American Economic Review, American Economic Association, vol. 115(4), pages 1059-1099, April.
    23. Claudia Biancotti & Carolina Camassa, 2023. "Loquacity and visible emotion: ChatGPT as a policy advisor," Questioni di Economia e Finanza (Occasional Papers) 814, Bank of Italy, Economic Research and International Relations Area.
    24. Shumiao Ouyang & Hayong Yun & Xingjian Zheng, 2024. "AI as Decision-Maker: Ethics and Risk Preferences of LLMs," Papers 2406.01168, arXiv.org, revised Jun 2025.
    25. Christoph Carnehl & Johannes Schneider, 2025. "A Quest for Knowledge," Econometrica, Econometric Society, vol. 93(2), pages 623-659, March.
    26. Jürgensmeier, Lukas & Skiera, Bernd, 2024. "Generative AI for scalable feedback to multimodal exercises," International Journal of Research in Marketing, Elsevier, vol. 41(3), pages 468-488.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liping Wang & Jiawei Li & Lifan Zhao & Zhizhuo Kou & Xiaohan Wang & Xinyi Zhu & Hao Wang & Yanyan Shen & Lei Chen, 2023. "Methods for Acquiring and Incorporating Knowledge into Stock Price Prediction: A Survey," Papers 2308.04947, arXiv.org.
    2. Yuqi Nie & Yaxuan Kong & Xiaowen Dong & John M. Mulvey & H. Vincent Poor & Qingsong Wen & Stefan Zohren, 2024. "A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges," Papers 2406.11903, arXiv.org.
    3. Baptiste Lefort & Eric Benhamou & Jean-Jacques Ohana & David Saltiel & Beatrice Guez, 2024. "Optimizing Performance: How Compact Models Match or Exceed GPT's Classification Capabilities through Fine-Tuning," Papers 2409.11408, arXiv.org.
    4. Manish Jha & Jialin Qian & Michael Weber & Baozhong Yang, 2024. "Harnessing Generative AI for Economic Insights," Papers 2410.03897, arXiv.org, revised Feb 2025.
    5. Hanshuang Tong & Jun Li & Ning Wu & Ming Gong & Dongmei Zhang & Qi Zhang, 2024. "Ploutos: Towards interpretable stock movement prediction with financial large language model," Papers 2403.00782, arXiv.org.
    6. Ummara Mumtaz & Summaya Mumtaz, 2023. "Potential of ChatGPT in predicting stock market trends based on Twitter Sentiment Analysis," Papers 2311.06273, arXiv.org.
    7. Yuan Li & Bingqiao Luo & Qian Wang & Nuo Chen & Xu Liu & Bingsheng He, 2024. "A Reflective LLM-based Agent to Guide Zero-shot Cryptocurrency Trading," Papers 2407.09546, arXiv.org.
    8. Dong, Mengming Michael & Stratopoulos, Theophanis C. & Wang, Victor Xiaoqi, 2024. "A scoping review of ChatGPT research in accounting and finance," International Journal of Accounting Information Systems, Elsevier, vol. 55(C).
    9. Eléonore Dodivers & Ismaël Rafaï, 2025. "Uncovering the Fairness of AI: Exploring Focal Point, Inequality Aversion, and Altruism in ChatGPT's Dictator Game Decisions," GREDEG Working Papers 2025-09, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    10. Hanming Fang & Ming Li & Guangli Lu, 2025. "Decoding China’s Industrial Policies," PIER Working Paper Archive 25-012, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    11. Kelvin J. L. Koa & Yunshan Ma & Ritchie Ng & Tat-Seng Chua, 2024. "Learning to Generate Explainable Stock Predictions using Self-Reflective Large Language Models," Papers 2402.03659, arXiv.org, revised Feb 2024.
    12. Ko, Hyungjin & Lee, Jaewook, 2024. "Can ChatGPT improve investment decisions? From a portfolio management perspective," Finance Research Letters, Elsevier, vol. 64(C).
    13. Nguyen, Jeremy K., 2024. "Human bias in AI models? Anchoring effects and mitigation strategies in large language models," Journal of Behavioral and Experimental Finance, Elsevier, vol. 43(C).
    14. Junwei Su & Shan Wu & Jinhui Li, 2024. "MTRGL:Effective Temporal Correlation Discerning through Multi-modal Temporal Relational Graph Learning," Papers 2401.14199, arXiv.org, revised Feb 2024.
    15. Rice, Stephen & Crouse, Sean R. & Winter, Scott R. & Rice, Connor, 2024. "The advantages and limitations of using ChatGPT to enhance technological research," Technology in Society, Elsevier, vol. 76(C).
    16. Fu, Chao & Luo, Dianying & Zhang, Jiaoshu & Li, Wenxia, 2025. "Tax incentives, marketization level, and corporate digital transformation," International Review of Economics & Finance, Elsevier, vol. 97(C).
    17. Deborah Miori & Constantin Petrov, 2023. "Narratives from GPT-derived Networks of News, and a link to Financial Markets Dislocations," Papers 2311.14419, arXiv.org.
    18. Francisco Peñaranda & Enrique Sentana, 2024. "Portfolio management with big data," Working Papers wp2024_2411, CEMFI.
    19. Alberto Menéndez Medina & José Antonio Heredia Álvaro, 2024. "Using Generative Pre-Trained Transformers (GPT) for Electricity Price Trend Forecasting in the Spanish Market," Energies, MDPI, vol. 17(10), pages 1-15, May.
    20. Acar, Oguz A., 2024. "Commentary: Reimagining marketing education in the age of generative AI," International Journal of Research in Marketing, Elsevier, vol. 41(3), pages 489-495.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.09736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.