IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.22244.html
   My bibliography  Save this paper

Valuing Time in Silicon: Can Large Language Model Replicate Human Value of Travel Time

Author

Listed:
  • Yingnan Yan
  • Tianming Liu
  • Yafeng Yin

Abstract

As a key advancement in artificial intelligence, large language models (LLMs) are set to transform transportation systems. While LLMs offer the potential to simulate human travelers in future mixed-autonomy transportation systems, their behavioral fidelity in complex scenarios remains largely unconfirmed by existing research. This study addresses this gap by conducting a comprehensive analysis of the value of travel time (VOT) of a popular LLM, GPT-4o. We employ a full factorial experimental design to systematically examine the LLM's sensitivity to various transportation contexts, including the choice setting, travel purpose, income, and socio-demographic factors. Our results reveal a high degree of behavioral similarity between the LLM and humans. The LLM exhibits an aggregate VOT similar to that of humans, and demonstrates human-like sensitivity to travel purpose, income, and the time-cost trade-off ratios of the alternatives. Furthermore, the behavioral patterns of LLM are remarkably consistent across varied contexts. However, we also find that the LLM's context sensitivity is less pronounced than that observed in humans. Overall, this study provides a foundational benchmark for the future development of LLMs as proxies for human travelers, demonstrating their value and robustness while highlighting that their blunted contextual sensitivity requires careful consideration.

Suggested Citation

  • Yingnan Yan & Tianming Liu & Yafeng Yin, 2025. "Valuing Time in Silicon: Can Large Language Model Replicate Human Value of Travel Time," Papers 2507.22244, arXiv.org.
  • Handle: RePEc:arx:papers:2507.22244
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.22244
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.22244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.