IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.21400.html
   My bibliography  Save this paper

Who Gets the Callback? Generative AI and Gender Bias

Author

Listed:
  • Sugat Chaturvedi
  • Rochana Chaturvedi

Abstract

Generative artificial intelligence (AI), particularly large language models (LLMs), is being rapidly deployed in recruitment and for candidate shortlisting. We audit several mid-sized open-source LLMs for gender bias using a dataset of 332,044 real-world online job postings. For each posting, we prompt the model to recommend whether an equally qualified male or female candidate should receive an interview callback. We find that most models tend to favor men, especially for higher-wage roles. Mapping job descriptions to the Standard Occupational Classification system, we find lower callback rates for women in male-dominated occupations and higher rates in female-associated ones, indicating occupational segregation. A comprehensive analysis of linguistic features in job ads reveals strong alignment of model recommendations with traditional gender stereotypes. To examine the role of recruiter identity, we steer model behavior by infusing Big Five personality traits and simulating the perspectives of historical figures. We find that less agreeable personas reduce stereotyping, consistent with an agreeableness bias in LLMs. Our findings highlight how AI-driven hiring may perpetuate biases in the labor market and have implications for fairness and diversity within firms.

Suggested Citation

  • Sugat Chaturvedi & Rochana Chaturvedi, 2025. "Who Gets the Callback? Generative AI and Gender Bias," Papers 2504.21400, arXiv.org.
  • Handle: RePEc:arx:papers:2504.21400
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.21400
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.21400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.