IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2025-90.html
   My bibliography  Save this paper

Financial Stability Implications of Generative AI: Taming the Animal Spirits

Author

Abstract

This paper investigates the impact of the adoption of generative AI on financial stability. We conduct laboratory-style experiments using large language models to replicate classic studies on herd behavior in investment decisions. Our results show that AI agents make more rational decisions than humans, relying predominantly on private information over market trends. Increased reliance on AI-powered investment advice could therefore potentially lead to fewer asset price bubbles arising from animal spirits that trade by following the herd. However, exploring variations in the experimental settings reveals that AI agents can be induced to herd optimally when explicitly guided to make profit-maximizing decisions. While optimal herding improves market discipline, this behavior still carries potential implications for financial stability. In other experimental variations, we show that AI agents are not purely algorithmic, but have inherited some elements of human conditioning and bias.

Suggested Citation

  • Seung Jung Lee & Anne Lundgaard Hansen, 2025. "Financial Stability Implications of Generative AI: Taming the Animal Spirits," Finance and Economics Discussion Series 2025-090, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2025-90
    DOI: 10.17016/FEDS.2025.090
    as

    Download full text from publisher

    File URL: https://www.federalreserve.gov/econres/feds/files/2025090pap.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.17016/FEDS.2025.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mathias Drehmann & Jörg Oechssler & Andreas Roider, 2005. "Herding and Contrarian Behavior in Financial Markets: An Internet Experiment," American Economic Review, American Economic Association, vol. 95(5), pages 1403-1426, December.
    2. Marco Cipriani & Antonio Guarino, 2005. "Herd Behavior in a Laboratory Financial Market," American Economic Review, American Economic Association, vol. 95(5), pages 1427-1443, December.
    3. Marco Cipriani & Antonio Guarino, 2009. "Herd Behavior in Financial Markets: An Experiment with Financial Market Professionals," Journal of the European Economic Association, MIT Press, vol. 7(1), pages 206-233, March.
    4. Cipriani Marco & Guarino Antonio, 2008. "Herd Behavior and Contagion in Financial Markets," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 8(1), pages 1-56, October.
    5. Hsieh, Shu-Fan & Chan, Chia-Ying & Wang, Ming-Chun, 2020. "Retail investor attention and herding behavior," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 109-132.
    6. Sushil Bikhchandani & Sunil Sharma, 2001. "Herd Behavior in Financial Markets," IMF Staff Papers, Palgrave Macmillan, vol. 47(3), pages 1-1.
    7. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," NBER Working Papers 31122, National Bureau of Economic Research, Inc.
    8. Galariotis, Emilios C. & Krokida, Styliani-Iris & Spyrou, Spyros I., 2016. "Herd behavior and equity market liquidity: Evidence from major markets," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 140-149.
    9. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    10. William J. Bazley & Henrik Cronqvist & Milica Mormann, 2021. "Visual Finance: The Pervasive Effects of Red on Investor Behavior," Management Science, INFORMS, vol. 67(9), pages 5616-5641, September.
    11. Markus K. Brunnermeier & Lasse Heje Pedersen, 2009. "Market Liquidity and Funding Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 22(6), pages 2201-2238, June.
    12. R. Maria del Rio-Chanona & Marco Pangallo & Cars Hommes, 2025. "Can Generative AI agents behave like humans? Evidence from laboratory market experiments," Papers 2505.07457, arXiv.org.
    13. Kliger, Doron & Gilad, Dalia, 2012. "Red light, green light: Color priming in financial decisions," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 41(5), pages 738-745.
    14. Hoyoung Lee & Junhyuk Seo & Suhwan Park & Junhyeong Lee & Wonbin Ahn & Chanyeol Choi & Alejandro Lopez-Lira & Yongjae Lee, 2025. "Your AI, Not Your View: The Bias of LLMs in Investment Analysis," Papers 2507.20957, arXiv.org, revised Oct 2025.
    15. Alejandro Lopez-Lira, 2025. "Can Large Language Models Trade? Testing Financial Theories with LLM Agents in Market Simulations," Papers 2504.10789, arXiv.org.
    16. Scharfstein, David S & Stein, Jeremy C, 1990. "Herd Behavior and Investment," American Economic Review, American Economic Association, vol. 80(3), pages 465-479, June.
    17. Avery, Christopher & Zemsky, Peter, 1998. "Multidimensional Uncertainty and Herd Behavior in Financial Markets," American Economic Review, American Economic Association, vol. 88(4), pages 724-748, September.
    18. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    19. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    20. Jingru Jia & Zehua Yuan & Junhao Pan & Paul E. McNamara & Deming Chen, 2024. "Decision-Making Behavior Evaluation Framework for LLMs under Uncertain Context," Papers 2406.05972, arXiv.org, revised Oct 2024.
    21. Argyle, Lisa P. & Busby, Ethan C. & Fulda, Nancy & Gubler, Joshua R. & Rytting, Christopher & Wingate, David, 2023. "Out of One, Many: Using Language Models to Simulate Human Samples," Political Analysis, Cambridge University Press, vol. 31(3), pages 337-351, July.
    22. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," Papers 2301.07543, arXiv.org.
    23. Timo Gnambs & Markus Appel & Aileen Oeberst, 2015. "Red Color and Risk-Taking Behavior in Online Environments," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne Lundgaard Hansen & Seung Jung Lee, 2025. "Financial Stability Implications of Generative AI: Taming the Animal Spirits," Papers 2510.01451, arXiv.org.
    2. Hirshleifer, David & Teoh, Siew Hong, 2008. "Thought and Behavior Contagion in Capital Markets," MPRA Paper 9142, University Library of Munich, Germany.
    3. Marco Cipriani & Antonio Guarino, 2014. "Estimating a Structural Model of Herd Behavior in Financial Markets," American Economic Review, American Economic Association, vol. 104(1), pages 224-251, January.
    4. Marco Cipriani & Antonio Guarino, 2005. "Herd Behavior in a Laboratory Financial Market," American Economic Review, American Economic Association, vol. 95(5), pages 1427-1443, December.
    5. Simões Vieira, Elisabete F. & Valente Pereira, Márcia S., 2015. "Herding behaviour and sentiment: Evidence in a small European market," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 18(1), pages 78-86.
    6. Puput Tri Komalasari & Marwan Asri & Bernardinus M. Purwanto & Bowo Setiyono, 2022. "Herding behaviour in the capital market: What do we know and what is next?," Management Review Quarterly, Springer, vol. 72(3), pages 745-787, September.
    7. Boortz, Christopher & Kremer, Stephanie & Jurkatis, Simon & Nautz, Dieter, 2014. "Information risk, market stress and institutional herding in financial markets: New evidence through the lens of a simulated model," SFB 649 Discussion Papers 2014-029, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. repec:hum:wpaper:sfb649dp2014-029 is not listed on IDEAS
    9. Jonathan E. Alevy & Michael S. Haigh & John List, 2006. "Information Cascades: Evidence from An Experiment with Financial Market Professionals," NBER Working Papers 12767, National Bureau of Economic Research, Inc.
    10. Marco Cipriani & Antonio Guarino, 2009. "Herd Behavior in Financial Markets: An Experiment with Financial Market Professionals," Journal of the European Economic Association, MIT Press, vol. 7(1), pages 206-233, March.
    11. Park, Andreas & Sgroi, Daniel, 2012. "Herding, contrarianism and delay in financial market trading," European Economic Review, Elsevier, vol. 56(6), pages 1020-1037.
    12. Drehmann, Mathias & Oechssler, Jorg & Roider, Andreas, 2007. "Herding with and without payoff externalities -- an internet experiment," International Journal of Industrial Organization, Elsevier, vol. 25(2), pages 391-415, April.
    13. Camara, Omar, 2017. "Industry herd behaviour in financing decision making," Journal of Economics and Business, Elsevier, vol. 94(C), pages 32-42.
    14. Pop, Raluca Elena, 2012. "Herd behavior towards the market index: evidence from Romanian stock exchange," MPRA Paper 51595, University Library of Munich, Germany.
    15. Park, Andreas & Sgroi, Daniel, "undated". "When Herding and Contrarianism Foster Market Efficiency: A Financial Trading Experiment," Economic Research Papers 269852, University of Warwick - Department of Economics.
    16. David Hirshleifer & Siew Hong Teoh, 2003. "Herd Behaviour and Cascading in Capital Markets: a Review and Synthesis," European Financial Management, European Financial Management Association, vol. 9(1), pages 25-66, March.
    17. Chang, Chia-Lin & McAleer, Michael & Wang, Yu-Ann, 2020. "Herding behaviour in energy stock markets during the Global Financial Crisis, SARS, and ongoing COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Choijil, Enkhbayar & Méndez, Christian Espinosa & Wong, Wing-Keung & Vieito, João Paulo & Batmunkh, Munkh-Ulzii, 2022. "Thirty years of herd behavior in financial markets: A bibliometric analysis," Research in International Business and Finance, Elsevier, vol. 59(C).
    19. Shi, Guiqiang & Shen, Dehua & Zhu, Zhaobo, 2024. "Herding towards carbon neutrality: The role of investor attention," International Review of Financial Analysis, Elsevier, vol. 91(C).
    20. Pierdzioch Christian & Stadtmann Georg, 2010. "Herdenverhalten von Wechselkursprognostikern? / Herd Behavior of Exchange Rate Forecasters?," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 230(4), pages 436-453, August.
    21. Faheem Aslam & Paulo Ferreira & Haider Ali & Sumera Kauser, 2022. "Herding behavior during the Covid-19 pandemic: a comparison between Asian and European stock markets based on intraday multifractality," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(2), pages 333-359, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G40 - Financial Economics - - Behavioral Finance - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2025-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.