IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.02966.html
   My bibliography  Save this paper

Measuring Human Leadership Skills with Artificially Intelligent Agents

Author

Listed:
  • Ben Weidmann
  • Yixian Xu
  • David J. Deming

Abstract

We show that the ability to lead groups of humans is predicted by leadership skill with Artificially Intelligent agents. In a large pre-registered lab experiment, human leaders worked with AI agents to solve problems. Their performance on this 'AI leadership test' was strongly correlated with their causal impact on human teams, which we estimate by repeatedly randomly assigning leaders to groups of human followers and measuring team performance. Successful leaders of both humans and AI agents ask more questions and engage in more conversational turn-taking; they score higher on measures of social intelligence, fluid intelligence, and decision-making skill, but do not differ in gender, age, ethnicity or education. Our findings indicate that AI agents can be effective proxies for human participants in social experiments, which greatly simplifies the measurement of leadership and teamwork skills.

Suggested Citation

  • Ben Weidmann & Yixian Xu & David J. Deming, 2025. "Measuring Human Leadership Skills with Artificially Intelligent Agents," Papers 2508.02966, arXiv.org.
  • Handle: RePEc:arx:papers:2508.02966
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.02966
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.02966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.