IDEAS home Printed from https://ideas.repec.org/a/bla/sysdyn/v40y2024i3ne1782.html
   My bibliography  Save this article

From text to map: a system dynamics bot for constructing causal loop diagrams

Author

Listed:
  • Niyousha Hosseinichimeh
  • Aritra Majumdar
  • Ross Williams
  • Navid Ghaffarzadegan

Abstract

We introduce and test the System Dynamics Bot, a computer program leveraging a large language model to automate the creation of causal loop diagrams from textual data. To evaluate its performance, we ensembled two distinct databases. The first dataset includes 20 causal loop diagrams and associated texts sourced from the system dynamics literature. The second dataset comprises responses from 30 participants to a vignette, along with causal loop diagrams coded by three system dynamics modelers. The bot uses textual data and successfully identifies approximately 60% of the links between variables and feedback loops in both datasets. This article outlines our approach, provides examples, and presents evaluation results. We discuss encountered challenges and implemented solutions in developing the System Dynamics Bot. The bot can facilitate extracting mental models from textual data and improve model‐building processes. Moreover, the two datasets can serve as a test‐bed for similar programs. © 2024 The Author(s). System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.

Suggested Citation

  • Niyousha Hosseinichimeh & Aritra Majumdar & Ross Williams & Navid Ghaffarzadegan, 2024. "From text to map: a system dynamics bot for constructing causal loop diagrams," System Dynamics Review, System Dynamics Society, vol. 40(3), July.
  • Handle: RePEc:bla:sysdyn:v:40:y:2024:i:3:n:e1782
    DOI: 10.1002/sdr.1782
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sdr.1782
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sdr.1782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ross Williams & Niyousha Hosseinichimeh & Aritra Majumdar & Navid Ghaffarzadegan, 2023. "Epidemic Modeling with Generative Agents," Papers 2307.04986, arXiv.org.
    2. Argyle, Lisa P. & Busby, Ethan C. & Fulda, Nancy & Gubler, Joshua R. & Rytting, Christopher & Wingate, David, 2023. "Out of One, Many: Using Language Models to Simulate Human Samples," Political Analysis, Cambridge University Press, vol. 31(3), pages 337-351, July.
    3. Sumaiya Haque & Hesam Mahmoudi & Navid Ghaffarzadegan & Konstantinos Triantis, 2023. "Mental models, cognitive maps, and the challenge of quantitative analysis of their network representations," System Dynamics Review, System Dynamics Society, vol. 39(2), pages 152-170, April.
    4. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," NBER Working Papers 31122, National Bureau of Economic Research, Inc.
    5. Yearworth, Mike & White, Leroy, 2013. "The uses of qualitative data in multimethodology: Developing causal loop diagrams during the coding process," European Journal of Operational Research, Elsevier, vol. 231(1), pages 151-161.
    6. Pablo Newberry & Neil Carhart, 2024. "Constructing causal loop diagrams from large interview data sets," System Dynamics Review, System Dynamics Society, vol. 40(1), January.
    7. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," Papers 2301.07543, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbrook-Johnson, Peter & Fu, Yuan, 2025. "Using NLP to create preliminary causal system maps for use in policy analysis," INET Oxford Working Papers 2025-09, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Navid Ghaffarzadegan & Aritra Majumdar & Ross Williams & Niyousha Hosseinichimeh, 2024. "Generative agent‐based modeling: an introduction and tutorial," System Dynamics Review, System Dynamics Society, vol. 40(1), January.
    2. Aliya Amirova & Theodora Fteropoulli & Nafiso Ahmed & Martin R Cowie & Joel Z Leibo, 2024. "Framework-based qualitative analysis of free responses of Large Language Models: Algorithmic fidelity," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-33, March.
    3. Chen Gao & Xiaochong Lan & Nian Li & Yuan Yuan & Jingtao Ding & Zhilun Zhou & Fengli Xu & Yong Li, 2024. "Large language models empowered agent-based modeling and simulation: a survey and perspectives," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-24, December.
    4. repec:osf:osfxxx:r3qng_v1 is not listed on IDEAS
    5. Sugat Chaturvedi & Rochana Chaturvedi, 2025. "Who Gets the Callback? Generative AI and Gender Bias," Papers 2504.21400, arXiv.org.
    6. Paola Cillo & Gaia Rubera, 2025. "Generative AI in innovation and marketing processes: A roadmap of research opportunities," Journal of the Academy of Marketing Science, Springer, vol. 53(3), pages 684-701, May.
    7. Kirshner, Samuel N., 2024. "GPT and CLT: The impact of ChatGPT's level of abstraction on consumer recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
    8. Nir Chemaya & Daniel Martin, 2023. "Perceptions and Detection of AI Use in Manuscript Preparation for Academic Journals," Papers 2311.14720, arXiv.org, revised Jan 2024.
    9. Nir Chemaya & Daniel Martin, 2024. "Perceptions and detection of AI use in manuscript preparation for academic journals," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-16, July.
    10. Lijia Ma & Xingchen Xu & Yong Tan, 2024. "Crafting Knowledge: Exploring the Creative Mechanisms of Chat-Based Search Engines," Papers 2402.19421, arXiv.org.
    11. Ali Goli & Amandeep Singh, 2023. "Exploring the Influence of Language on Time-Reward Perceptions in Large Language Models: A Study Using GPT-3.5," Papers 2305.02531, arXiv.org, revised Jun 2023.
    12. Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991, arXiv.org.
    13. Yuan Gao & Dokyun Lee & Gordon Burtch & Sina Fazelpour, 2024. "Take Caution in Using LLMs as Human Surrogates: Scylla Ex Machina," Papers 2410.19599, arXiv.org, revised Jan 2025.
    14. Jiaxin Liu & Yi Yang & Kar Yan Tam, 2025. "Evaluating and Aligning Human Economic Risk Preferences in LLMs," Papers 2503.06646, arXiv.org.
    15. Christoph Engel & Max R. P. Grossmann & Axel Ockenfels, 2023. "Integrating machine behavior into human subject experiments: A user-friendly toolkit and illustrations," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2024_01, Max Planck Institute for Research on Collective Goods.
    16. Yiting Chen & Tracy Xiao Liu & You Shan & Songfa Zhong, 2023. "The emergence of economic rationality of GPT," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(51), pages 2316205120-, December.
    17. Jiafu An & Difang Huang & Chen Lin & Mingzhu Tai, 2024. "Measuring Gender and Racial Biases in Large Language Models," Papers 2403.15281, arXiv.org.
    18. Fulin Guo, 2023. "GPT in Game Theory Experiments," Papers 2305.05516, arXiv.org, revised Dec 2023.
    19. Zareh Asatryan & Carlo Birkholz & Friedrich Heinemann, 2025. "Evidence-based policy or beauty contest? An LLM-based meta-analysis of EU cohesion policy evaluations," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 32(2), pages 625-655, April.
    20. Fabio Motoki & Valdemar Pinho Neto & Victor Rodrigues, 2024. "More human than human: measuring ChatGPT political bias," Public Choice, Springer, vol. 198(1), pages 3-23, January.
    21. Siting Estee Lu, 2024. "Strategic Interactions between Large Language Models-based Agents in Beauty Contests," Papers 2404.08492, arXiv.org, revised Oct 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:sysdyn:v:40:y:2024:i:3:n:e1782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/0883-7066 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.