IDEAS home Printed from https://ideas.repec.org/p/bca/bocawp/25-35.html
   My bibliography  Save this paper

Money Talks: AI Agents for Cash Management in Payment Systems

Author

Listed:
  • Iñaki Aldasoro
  • Ajit Desai

Abstract

Using prompt-based experiments with ChatGPT’s reasoning model, we evaluate whether a generative artificial intelligence (AI) agent can perform high-level intraday liquidity management in a wholesale payment system. We simulate payment scenarios with liquidity shocks and competing priorities to test the agent’s ability to maintain precautionary liquidity buffers, dynamically prioritize payments under tight constraints, and optimize the trade-off between settlement speed and liquidity usage. Our results show that even without domain-specific training, the AI agent closely replicates key prudential cash-management practices, issuing calibrated recommendations that preserve liquidity while minimizing delays. These findings suggest that routine cash-management tasks could be automated using general-purpose large language models, potentially reducing operational costs and improving intraday liquidity efficiency. We conclude with a discussion of the regulatory and policy safeguards that central banks and supervisors may need to consider in an era of AI-driven payment operations.

Suggested Citation

  • Iñaki Aldasoro & Ajit Desai, 2025. "Money Talks: AI Agents for Cash Management in Payment Systems," Staff Working Papers 25-35, Bank of Canada.
  • Handle: RePEc:bca:bocawp:25-35
    DOI: 10.34989/swp-2025-35
    as

    Download full text from publisher

    File URL: https://doi.org/10.34989/swp-2025-35
    File Function: Abstract
    Download Restriction: no

    File URL: https://www.bankofcanada.ca/wp-content/uploads/2025/11/swp2025-35.pdf
    File Function: Full text
    Download Restriction: no

    File URL: https://libkey.io/10.34989/swp-2025-35?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Galbiati, Marco & Soramäki, Kimmo, 2011. "An agent-based model of payment systems," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 859-875, June.
    2. Francisco Rivadeneyra & Nellie Zhang, 2022. "Payment Coordination and Liquidity Efficiency in the New Canadian Wholesale Payments System," Discussion Papers 2022-3, Bank of Canada.
    3. Ajit Desai & Zhentong Lu & Hiru Rodrigo & Jacob Sharples & Phoebe Tian & Nellie Zhang, 2023. "From LVTS to Lynx: Quantitative Assessment of Payment System Transition," Staff Working Papers 23-24, Bank of Canada.
    4. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," NBER Working Papers 31122, National Bureau of Economic Research, Inc.
    5. Bech, Morten L. & Garratt, Rod, 2003. "The intraday liquidity management game," Journal of Economic Theory, Elsevier, vol. 109(2), pages 198-219, April.
    6. Anton Korinek, 2025. "AI Agents for Economic Research," NBER Working Papers 34202, National Bureau of Economic Research, Inc.
    7. Anton Korinek, 2023. "Generative AI for Economic Research: Use Cases and Implications for Economists," Journal of Economic Literature, American Economic Association, vol. 61(4), pages 1281-1317, December.
    8. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," Papers 2301.07543, arXiv.org.
    9. Desai, Ajit & Lu, Zhentong & Rodrigo, Hiru & Sharples, Jacob & Tian, Phoebe & Zhang, Nellie, 2023. "From LVTS to Lynx: Quantitative assessment of payment system transition in Canada," Journal of Payments Strategy & Systems, Henry Stewart Publications, vol. 17(3), pages 291-314, September.
    10. Pascal Bornet & Jochen Wirtz, 2025. "Agentic Artificial Intelligence:Harnessing AI Agents to Reinvent Business, Work, and Life," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 14380, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:osf:osfxxx:r3qng_v1 is not listed on IDEAS
    2. Samuel Chang & Andrew Kennedy & Aaron Leonard & John A. List, 2024. "12 Best Practices for Leveraging Generative AI in Experimental Research," NBER Working Papers 33025, National Bureau of Economic Research, Inc.
    3. Ajit Desai & Jacob Sharples & Anneke Kosse, 2024. "Finding a needle in a haystack: a machine learning framework for anomaly detection in payment systems," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Granular data: new horizons and challenges, volume 61, Bank for International Settlements.
    4. Cova, Joshua & Schmitz, Luuk, 2024. "A primer for the use of classifier and generative large language models in social science research," OSF Preprints r3qng, Center for Open Science.
    5. Zareh Asatryan & Carlo Birkholz & Friedrich Heinemann, 2025. "Evidence-based policy or beauty contest? An LLM-based meta-analysis of EU cohesion policy evaluations," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 32(2), pages 625-655, April.
    6. Shumiao Ouyang & Hayong Yun & Xingjian Zheng, 2024. "AI as Decision-Maker: Ethics and Risk Preferences of LLMs," Papers 2406.01168, arXiv.org, revised Jun 2025.
    7. Paola Cillo & Gaia Rubera, 2025. "Generative AI in innovation and marketing processes: A roadmap of research opportunities," Journal of the Academy of Marketing Science, Springer, vol. 53(3), pages 684-701, May.
    8. Irving Fisher Committee, 2024. "Granular data: new horizons and challenges," IFC Bulletins, Bank for International Settlements, number 61.
    9. Rosa-García, Alfonso, 2024. "Student Reactions to AI-Replicant Professor in an Econ101 Teaching Video," MPRA Paper 120135, University Library of Munich, Germany.
    10. Kevin Leyton-Brown & Paul Milgrom & Neil Newman & Ilya Segal, 2024. "Artificial Intelligence and Market Design: Lessons Learned from Radio Spectrum Reallocation," NBER Chapters, in: New Directions in Market Design, National Bureau of Economic Research, Inc.
    11. C. Monica Capra & Thomas J. Kniesner, 2025. "Daniel Kahneman’s underappreciated last published paper: Empirical implications for benefit-cost analysis and a chat session discussion with bots," Journal of Risk and Uncertainty, Springer, vol. 71(1), pages 29-51, August.
    12. Kirshner, Samuel N., 2024. "GPT and CLT: The impact of ChatGPT's level of abstraction on consumer recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
    13. Shu Wang & Zijun Yao & Shuhuai Zhang & Jianuo Gai & Tracy Xiao Liu & Songfa Zhong, 2025. "When Experimental Economics Meets Large Language Models: Evidence-based Tactics," Papers 2505.21371, arXiv.org, revised Jul 2025.
    14. Zengqing Wu & Run Peng & Xu Han & Shuyuan Zheng & Yixin Zhang & Chuan Xiao, 2023. "Smart Agent-Based Modeling: On the Use of Large Language Models in Computer Simulations," Papers 2311.06330, arXiv.org, revised Dec 2023.
    15. repec:osf:osfxxx:udz28_v1 is not listed on IDEAS
    16. Hui Chen & Antoine Didisheim & Luciano Somoza & Hanqing Tian, 2025. "A Financial Brain Scan of the LLM," Papers 2508.21285, arXiv.org.
    17. De Caux, Robert & Brede, Markus & McGroarty, Frank, 2016. "Payment prioritisation and liquidity risk in collateralised interbank payment systems," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 41(C), pages 139-150.
    18. Joshua C. Yang & Damian Dailisan & Marcin Korecki & Carina I. Hausladen & Dirk Helbing, 2024. "LLM Voting: Human Choices and AI Collective Decision Making," Papers 2402.01766, arXiv.org, revised Aug 2024.
    19. Elif Akata & Lion Schulz & Julian Coda-Forno & Seong Joon Oh & Matthias Bethge & Eric Schulz, 2025. "Playing repeated games with large language models," Nature Human Behaviour, Nature, vol. 9(7), pages 1380-1390, July.
    20. Nir Chemaya & Daniel Martin, 2024. "Perceptions and detection of AI use in manuscript preparation for academic journals," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-16, July.
    21. Lijia Ma & Xingchen Xu & Yong Tan, 2024. "Crafting Knowledge: Exploring the Creative Mechanisms of Chat-Based Search Engines," Papers 2402.19421, arXiv.org.
    22. Ali Goli & Amandeep Singh, 2023. "Exploring the Influence of Language on Time-Reward Perceptions in Large Language Models: A Study Using GPT-3.5," Papers 2305.02531, arXiv.org, revised Jun 2023.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • A12 - General Economics and Teaching - - General Economics - - - Relation of Economics to Other Disciplines
    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bca:bocawp:25-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bocgvca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.