IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.21037.html
   My bibliography  Save this paper

The amplifier effect of artificial agents in social contagion

Author

Listed:
  • Eric Hitz
  • Mingmin Feng
  • Radu Tanase
  • Ren'e Algesheimer
  • Manuel S. Mariani

Abstract

Recent advances in artificial intelligence have led to the proliferation of artificial agents in social contexts, ranging from education to online social media and financial markets, among many others. The increasing rate at which artificial and human agents interact makes it urgent to understand the consequences of human-machine interactions for the propagation of new ideas, products, and behaviors in society. Across two distinct empirical contexts, we find here that artificial agents lead to significantly faster and wider social contagion. To this end, we replicate a choice experiment previously conducted with human subjects by using artificial agents powered by large language models (LLMs). We use the experiment's results to measure the adoption thresholds of artificial agents and their impact on the spread of social contagion. We find that artificial agents tend to exhibit lower adoption thresholds than humans, which leads to wider network-based social contagions. Our findings suggest that the increased presence of artificial agents in real-world networks may accelerate behavioral shifts, potentially in unforeseen ways.

Suggested Citation

  • Eric Hitz & Mingmin Feng & Radu Tanase & Ren'e Algesheimer & Manuel S. Mariani, 2025. "The amplifier effect of artificial agents in social contagion," Papers 2502.21037, arXiv.org, revised Mar 2025.
  • Handle: RePEc:arx:papers:2502.21037
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.21037
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.21037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.