IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.17479.html
   My bibliography  Save this paper

Twin-2K-500: A dataset for building digital twins of over 2,000 people based on their answers to over 500 questions

Author

Listed:
  • Olivier Toubia
  • George Z. Gui
  • Tianyi Peng
  • Daniel J. Merlau
  • Ang Li
  • Haozhe Chen

Abstract

LLM-based digital twin simulation, where large language models are used to emulate individual human behavior, holds great promise for research in AI, social science, and digital experimentation. However, progress in this area has been hindered by the scarcity of real, individual-level datasets that are both large and publicly available. This lack of high-quality ground truth limits both the development and validation of digital twin methodologies. To address this gap, we introduce a large-scale, public dataset designed to capture a rich and holistic view of individual human behavior. We survey a representative sample of $N = 2,058$ participants (average 2.42 hours per person) in the US across four waves with 500 questions in total, covering a comprehensive battery of demographic, psychological, economic, personality, and cognitive measures, as well as replications of behavioral economics experiments and a pricing survey. The final wave repeats tasks from earlier waves to establish a test-retest accuracy baseline. Initial analyses suggest the data are of high quality and show promise for constructing digital twins that predict human behavior well at the individual and aggregate levels. By making the full dataset publicly available, we aim to establish a valuable testbed for the development and benchmarking of LLM-based persona simulations. Beyond LLM applications, due to its unique breadth and scale the dataset also enables broad social science research, including studies of cross-construct correlations and heterogeneous treatment effects.

Suggested Citation

  • Olivier Toubia & George Z. Gui & Tianyi Peng & Daniel J. Merlau & Ang Li & Haozhe Chen, 2025. "Twin-2K-500: A dataset for building digital twins of over 2,000 people based on their answers to over 500 questions," Papers 2505.17479, arXiv.org.
  • Handle: RePEc:arx:papers:2505.17479
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.17479
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.17479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.