IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20121464.html
   My bibliography  Save this paper

An MVAR framework to capture extreme events in macro-prudential stress tests

Author

Listed:
  • Guarda, Paolo
  • Rouabah, Abdelaziz
  • Theal, John

Abstract

Severe financial turbulences are driven by high impact and low probability events that are the characteristic hallmarks of systemic financial stress. These unlikely adverse events arise from the extreme tail of a probability distribution and are therefore very poorly captured by traditional econometric models that rely on the assumption of normality. In order to address the problem of extreme tail events, we adopt a mixture vector autoregressive (MVAR) model framework that allows for a multi-modal distribution of the residuals. A comparison between the respective results of a VAR and MVAR approach suggests that the mixture of distributions allows for a better assessment of the effect that adverse shocks have on counterparty credit risk, the real economy and banks' capital requirements. Consequently, we argue that the MVAR provides a more accurate assessment of risk since it captures the fat tail events often observed in time series of default probabilities. JEL Classification: C15, E44, G01, G21

Suggested Citation

  • Guarda, Paolo & Rouabah, Abdelaziz & Theal, John, 2012. "An MVAR framework to capture extreme events in macro-prudential stress tests," Working Paper Series 1464, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20121464
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1464.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Glenn Hoggarth & Steffen Sorensen & Lea Zicchino, 2005. "Stress tests of UK banks using a VAR approach," Bank of England working papers 282, Bank of England.
    2. Dovern, Jonas & Meier, Carsten-Patrick & Vilsmeier, Johannes, 2010. "How resilient is the German banking system to macroeconomic shocks?," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1839-1848, August.
    3. Miroslav Misina & David Tessier, 2008. "Non-Linearities, Model Uncertainty, and Macro Stress Testing," Staff Working Papers 08-30, Bank of Canada.
    4. Rodrigo Alfaro & Mathias Drehmann, 2009. "Macro stress tests and crises: what can we learn?," BIS Quarterly Review, Bank for International Settlements, December.
    5. Marcucci, Juri & Quagliariello, Mario, 2008. "Is bank portfolio riskiness procyclical: Evidence from Italy using a vector autoregression," Journal of International Financial Markets, Institutions and Money, Elsevier, pages 46-63.
    6. Jacobson, Tor & Linde, Jesper & Roszbach, Kasper, 2005. "Exploring interactions between real activity and the financial stance," Journal of Financial Stability, Elsevier, pages 308-341.
    7. Jacobson, Tor & Linde, Jesper & Roszbach, Kasper, 2005. "Exploring interactions between real activity and the financial stance," Journal of Financial Stability, Elsevier, pages 308-341.
    8. Katarzyna Maciejowska, 2010. "Estimation Methods Comparison of SVAR Models with a Mixture of Two Normal Distributions," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 2(4), pages 279-314, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gossé, Jean-Baptiste & Guillaumin, Cyriac, 2013. "L’apport de la représentation VAR de Christopher A. Sims à la science économique," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 309-319, Décembre.
    2. Soyoung Kim & Yoonbai Kim, 2016. "The RMB Debate: Empirical Analysis on the Effects of Exchange Rate Shocks in China and Japan," The World Economy, Wiley Blackwell, pages 1539-1557.

    More about this item

    Keywords

    counterparty risk; Luxembourg banking sector; MVAR; stress testing; tier 1 capital ratio;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G01 - Financial Economics - - General - - - Financial Crises
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20121464. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Official Publications). General contact details of provider: http://edirc.repec.org/data/emieude.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.