IDEAS home Printed from https://ideas.repec.org/a/ijc/ijcjou/y2009q3a3.html
   My bibliography  Save this article

Interdependencies between Expected Default Frequency and the Macro Economy

Author

Listed:
  • Per Asberg Sommar

    (Financial Stability Department, Sveriges Riksbank)

  • Hovick Shahnazarian

    (Financial Stability Department, Sveriges Riksbank)

Abstract

We use a vector error-correction model to study interdependencies between the aggregate expected default frequency (EDF) and the macroeconomic development. The model is used to forecast the median EDF. Evaluations of the model show that it yields low forecast errors and that the interest rate has the strongest impact on expected default frequency. Forecasts indicate that a lower short-term interest rate reduces the EDF and, in turn, risk premiums. This reduces the marginal cost for corporate investments and household consumption and stimulates growth through these two components of aggregate demand. At the same time, it imposes a downward pressure on the product prices of firms and thereby on inflation.

Suggested Citation

  • Per Asberg Sommar & Hovick Shahnazarian, 2009. "Interdependencies between Expected Default Frequency and the Macro Economy," International Journal of Central Banking, International Journal of Central Banking, vol. 5(3), pages 83-110, September.
  • Handle: RePEc:ijc:ijcjou:y:2009:q:3:a:3
    as

    Download full text from publisher

    File URL: http://www.ijcb.org/journal/ijcb09q3a3.pdf
    Download Restriction: no

    File URL: http://www.ijcb.org/journal/ijcb09q3a3.htm
    Download Restriction: no

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    2. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Jacobson, Tor & Linde, Jesper & Roszbach, Kasper, 2005. "Exploring interactions between real activity and the financial stance," Journal of Financial Stability, Elsevier, vol. 1(3), pages 308-341, April.
    5. Jorge A Chan-Lau, 2006. "Fundamentals-Based Estimation of Default Probabilities - A Survey," IMF Working Papers 06/149, International Monetary Fund.
    6. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saldías, Martín, 2013. "A market-based approach to sector risk determinants and transmission in the euro area," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4534-4555.
    2. Petr Gapko & Martin Smid, 2016. "Multi-Period Structural Model of a Mortgage Portfolio with Cointegrated Factors," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(6), pages 565-574, December.
    3. Bruneau, C. & de Bandt, O. & El Amri, W., 2012. "Macroeconomic fluctuations and corporate financial fragility," Journal of Financial Stability, Elsevier, vol. 8(4), pages 219-235.
    4. Saldías, Martín, 2013. "A market-based approach to sector risk determinants and transmission in the euro area," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4534-4555.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ijc:ijcjou:y:2009:q:3:a:3. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bank for International Settlements). General contact details of provider: http://www.ijcb.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.