IDEAS home Printed from
   My bibliography  Save this paper

Non-Linearities, Model Uncertainty, and Macro Stress Testing


  • Miroslav Misina
  • David Tessier


A distinguishing feature of macro stress testing exercises is the use of macroeconomic models in scenario design and implementation. It is widely agreed that scenarios should be based on "rare but plausible" events that have either resulted in vulnerabilities in the past or could do so in the future. This requirement, however, raises a number of difficult statistical and methodological problems. Economic models, as well as the statistical models of the relationships among economic variables, generally focus on capturing the average rather than the extreme behaviour, and frequently rely on the assumption of linearity. In this paper we show that these models are particularly ill-suited for stress-testing as they do not adequately capture past behaviour in extreme events, nor do they generate plausible responses to shocks under stress. Whereas one might argue that the use of these models is still preferable to no having no models, since they at least impose the consistency restrictions on the paths generated under the scenario, failing to deal with a large extent of uncertainty of these paths may lead to results that are non-informative, and potentially misleading. The paper illustrates both of these problems by a series of examples, but our conclusions have broader implications for the types of models that would be useful in these exercises.

Suggested Citation

  • Miroslav Misina & David Tessier, 2008. "Non-Linearities, Model Uncertainty, and Macro Stress Testing," Staff Working Papers 08-30, Bank of Canada.
  • Handle: RePEc:bca:bocawp:08-30

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Òscar Jordà, 2005. "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, American Economic Association, vol. 95(1), pages 161-182, March.
    2. Jorge A Chan-Lau, 2006. "Fundamentals-Based Estimation of Default Probabilities - A Survey," IMF Working Papers 06/149, International Monetary Fund.
    3. Miroslav Misina & David Tessier & Shubhasis Dey, 2006. "Stress Testing the Corporate Loans Portfolio of the Canadian Banking Sector," Staff Working Papers 06-47, Bank of Canada.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Antonella Foglia, 2009. "Stress Testing Credit Risk: A Survey of Authorities' Aproaches," International Journal of Central Banking, International Journal of Central Banking, vol. 5(3), pages 9-45, September.
    2. Guarda, Paolo & Rouabah, Abdelaziz & Theal, John, 2012. "An MVAR framework to capture extreme events in macro-prudential stress tests," Working Paper Series 1464, European Central Bank.
    3. Gabriele Galati & Richhild Moessner, 2013. "Macroprudential Policy – A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 27(5), pages 846-878, December.
    4. Rodrigo A. Alfaro & Rodrigo Cifuentes S., 2011. "Financial Stability, Monetary Policy, and Central Banking: An Overview," Central Banking, Analysis, and Economic Policies Book Series,in: Rodrigo Alfaro (ed.), Financial Stability, Monetary Policy, and Central Banking, edition 1, volume 15, chapter 1, pages 001-010 Central Bank of Chile.
    5. Miroslav Misina & Greg Tkacz, 2009. "Credit, Asset Prices, and Financial Stress," International Journal of Central Banking, International Journal of Central Banking, vol. 5(4), pages 95-122, December.
    6. Schechtman, Ricardo & Gaglianone, Wagner Piazza, 2012. "Macro stress testing of credit risk focused on the tails," Journal of Financial Stability, Elsevier, vol. 8(3), pages 174-192.

    More about this item


    Financial stability;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bca:bocawp:08-30. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.