IDEAS home Printed from
   My bibliography  Save this paper

Fragilidad Bancaria en Colombia: Un Análisis Basado en las Hojas de Balance


  • Ignacio Lozano


  • Alexander Guarín



En este documento se estudia la relación empírica entre las fuentes de fondeo del crédito y la vulnerabilidad financiera del Sistema Bancario Colombiano. El trabajo propone la estimación bayesiana de modelos de regresión logística para identificar y predecir episodios de fragilidad bancaria asociados con las fuentes tradicionales y no tradicionales, que utilizan los bancos para proveer crédito. En particular, el ejercicio estima la probabilidad de que se presenten eventos de fragilidad tanto para el sistema bancario agregado como para los bancos individuales con datos mensuales de las hojas de balance para el periodo 1996-2013. Los resultados muestran que el creciente uso de los recursos no tradicionales para fondear el crédito, especialmente en sus fases de expansión, son fuente potencial de fragilidad financiera. Por consiguiente, el monitoreo a dichos recursos, a través de la técnica propuesta, proporciona una herramienta para detectar esos eventos. Classification JEL: C11, C23, C52, C53, G01, G20, G21

Suggested Citation

  • Ignacio Lozano & Alexander Guarín, 2014. "Fragilidad Bancaria en Colombia: Un Análisis Basado en las Hojas de Balance," Borradores de Economia 813, Banco de la Republica de Colombia.
  • Handle: RePEc:bdr:borrec:813

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. S. P. Brooks & N. Friel & R. King, 2003. "Classical model selection via simulated annealing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 503-520.
    2. repec:pri:cepsud:237b%20shin is not listed on IDEAS
    3. Huang, Rocco & Ratnovski, Lev, 2011. "The dark side of bank wholesale funding," Journal of Financial Intermediation, Elsevier, vol. 20(2), pages 248-263, April.
    4. Bordo, Michael D. & Haubrich, Joseph G., 2010. "Credit crises, money and contractions: An historical view," Journal of Monetary Economics, Elsevier, vol. 57(1), pages 1-18, January.
    5. Damar, H. Evren & Meh, Césaire A. & Terajima, Yaz, 2013. "Leverage, balance-sheet size and wholesale funding," Journal of Financial Intermediation, Elsevier, vol. 22(4), pages 639-662.
    6. Hume, Michael & Sentance, Andrew, 2009. "The global credit boom: Challenges for macroeconomics and policy," Journal of International Money and Finance, Elsevier, vol. 28(8), pages 1426-1461, December.
    7. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    8. Greenwood, Robin & Landier, Augustin & Thesmar, David, 2015. "Vulnerable banks," Journal of Financial Economics, Elsevier, vol. 115(3), pages 471-485.
    9. Òscar Jordà & Moritz Schularick & Alan M. Taylor, 2011. "When credit bites back: leverage, business cycles, and crises," Working Paper Series 2011-27, Federal Reserve Bank of San Francisco.
    10. Pierre-Olivier Gourinchas & Rodrigo Valdes & Oscar Landerretche, 2001. "Lending Booms: Latin America and the World," ECONOMIA JOURNAL, THE LATIN AMERICAN AND CARIBBEAN ECONOMIC ASSOCIATION - LACEA, vol. 0(Spring 20), pages 47-100, January.
    11. Carmen M. Reinhart & Vincent Reinhart, 2010. "After the fall," Proceedings - Economic Policy Symposium - Jackson Hole, Federal Reserve Bank of Kansas City, pages 17-60.
    12. Valerie Cerra & Sweta Chaman Saxena, 2008. "Growth Dynamics: The Myth of Economic Recovery," American Economic Review, American Economic Association, vol. 98(1), pages 439-457, March.
    13. Alexander Guarín & Andrés González & Daphné Skandalis & Daniela Sánchez, 2014. "An Early Warning Model for Predicting Credit Booms Using Macroeconomic Aggregates," ENSAYOS SOBRE POLÍTICA ECONÓMICA, BANCO DE LA REPÚBLICA - ESPE, vol. 32(73), pages 77-86, July.
    14. Moritz Schularick & Alan M. Taylor, 2012. "Credit Booms Gone Bust: Monetary Policy, Leverage Cycles, and Financial Crises, 1870-2008," American Economic Review, American Economic Association, vol. 102(2), pages 1029-1061, April.
    15. Bruno, Valentina & Shin, Hyun Song, 2015. "Capital flows and the risk-taking channel of monetary policy," Journal of Monetary Economics, Elsevier, vol. 71(C), pages 119-132.
    16. Claessens, Stijn & Kose, M. Ayhan & Terrones, Marco E., 2012. "How do business and financial cycles interact?," Journal of International Economics, Elsevier, vol. 87(1), pages 178-190.
    17. Marco Terrones & Enrique G. Mendoza, 2008. "An Anatomy of Credit Booms; Evidence From Macro Aggregates and Micro Data," IMF Working Papers 08/226, International Monetary Fund.
    18. Joon‐Ho Hahm & Hyun Song Shin & Kwanho Shin, 2013. "Noncore Bank Liabilities and Financial Vulnerability," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45, pages 3-36, August.
    19. Agur, Itai, 2013. "Wholesale bank funding, capital requirements and credit rationing," Journal of Financial Stability, Elsevier, vol. 9(1), pages 38-45.
    20. Borio, Claudio, 2014. "The financial cycle and macroeconomics: What have we learnt?," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 182-198.
    21. Reinhart, Carmen & Goldstein, Morris & Kaminsky, Graciela, 2000. "Assessing financial vulnerability, an early warning system for emerging markets: Introduction," MPRA Paper 13629, University Library of Munich, Germany.
    22. Jeffrey A. Frankel & George Saravelos, 2010. "Are Leading Indicators of Financial Crises Useful for Assessing Country Vulnerability? Evidence from the 2008-09 Global Crisis," NBER Working Papers 16047, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G01 - Financial Economics - - General - - - Financial Crises
    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:borrec:813. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Clorith Angélica Bahos Olivera). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.