IDEAS home Printed from https://ideas.repec.org/f/plu413.html
   My authors  Follow this author

Jay Lu

Personal Details

First Name:Jay
Middle Name:
Last Name:Lu
Suffix:
RePEc Short-ID:plu413
http://www.econ.ucla.edu/jay/
Terminal Degree:2014 Department of Economics; Princeton University (from RePEc Genealogy)

Affiliation

Department of Economics
University of California-Los Angeles (UCLA)

Los Angeles, California (United States)
http://www.econ.ucla.edu/
RePEc:edi:deuclus (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Annie Liang & Jay Lu & Xiaosheng Mu, 2021. "Algorithm Design: Fairness and Accuracy," Papers 2112.09975, arXiv.org, revised Aug 2022.
  2. Jay Lu & Simon Board, 2015. "Information Provision and Consumer Search," 2015 Meeting Papers 1427, Society for Economic Dynamics.

Articles

  1. Lu, Jay, 2021. "Random ambiguity," Theoretical Economics, Econometric Society, vol. 16(2), May.
  2. Jay Lu, 2019. "Bayesian Identification: A Theory for State-Dependent Utilities," American Economic Review, American Economic Association, vol. 109(9), pages 3192-3228, September.
  3. Lu, Jay & Saito, Kota, 2018. "Random intertemporal choice," Journal of Economic Theory, Elsevier, vol. 177(C), pages 780-815.
  4. Simon Board & Jay Lu, 2018. "Competitive Information Disclosure in Search Markets," Journal of Political Economy, University of Chicago Press, vol. 126(5), pages 1965-2010.
  5. Jose Apesteguia & Miguel A. Ballester & Jay Lu, 2017. "Single‐Crossing Random Utility Models," Econometrica, Econometric Society, vol. 85, pages 661-674, March.
  6. Jay Lu, 2016. "Random Choice and Private Information," Econometrica, Econometric Society, vol. 84, pages 1983-2027, November.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Annie Liang & Jay Lu & Xiaosheng Mu, 2021. "Algorithm Design: Fairness and Accuracy," Papers 2112.09975, arXiv.org, revised Aug 2022.

    Cited by:

    1. Marie Obidzinski & Yves Oytana, 2022. "Advisory algorithms and liability rules," Working Papers 2022-04, CRESE.

  2. Jay Lu & Simon Board, 2015. "Information Provision and Consumer Search," 2015 Meeting Papers 1427, Society for Economic Dynamics.

    Cited by:

    1. Strulik, Holger, 2018. "I shouldn't eat this donut: Self-control, body weight, and health in a life cycle model," University of Göttingen Working Papers in Economics 360, University of Goettingen, Department of Economics.

Articles

  1. Jay Lu, 2019. "Bayesian Identification: A Theory for State-Dependent Utilities," American Economic Review, American Economic Association, vol. 109(9), pages 3192-3228, September.

    Cited by:

    1. Jonathan Libgober, 2021. "Hypothetical Beliefs Identify Information," Papers 2105.07097, arXiv.org.
    2. Elias Tsakas, 2022. "Belief identification with state-dependent utilities," Papers 2203.10505, arXiv.org, revised Mar 2022.
    3. Elias Tsakas, 2021. "Identification of misreported beliefs," Papers 2112.12975, arXiv.org.

  2. Lu, Jay & Saito, Kota, 2018. "Random intertemporal choice," Journal of Economic Theory, Elsevier, vol. 177(C), pages 780-815.

    Cited by:

    1. Benjamin Enke & Thomas W. Graeber, 2021. "Cognitive Uncertainty in Intertemporal Choice," CESifo Working Paper Series 9472, CESifo.
    2. D. Pennesi, 2016. "Intertemporal discrete choice," Working Papers wp1061, Dipartimento Scienze Economiche, Universita' di Bologna.
    3. Christopher P. Chambers & Yusufcan Masatlioglu & Christopher Turansick, 2021. "Correlated Choice," Papers 2103.05084, arXiv.org, revised Oct 2022.

  3. Simon Board & Jay Lu, 2018. "Competitive Information Disclosure in Search Markets," Journal of Political Economy, University of Chicago Press, vol. 126(5), pages 1965-2010.

    Cited by:

    1. Au, Pak Hung & Kawai, Keiichi, 2020. "Competitive information disclosure by multiple senders," Games and Economic Behavior, Elsevier, vol. 119(C), pages 56-78.
    2. Pak Hung Au & Keiichi Kawai, 2021. "Competitive disclosure of correlated information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(3), pages 767-799, October.
    3. Mark Armstrong & Jidong Zhou, 2021. "Consumer Information and the Limits to Competition," Cowles Foundation Discussion Papers 2269, Cowles Foundation for Research in Economics, Yale University.
    4. Jidong Zhou, 2020. "Improved Information in Search Markets," Cowles Foundation Discussion Papers 2264R, Cowles Foundation for Research in Economics, Yale University, revised Jun 2022.
    5. E. Carroni & L. Ferrari & S. Righi, 2018. "The Price of Discovering Your Needs Online," Working Papers wp1116, Dipartimento Scienze Economiche, Universita' di Bologna.
    6. Lang, Ruitian, 2019. "Try before you buy: A theory of dynamic information acquisition," Journal of Economic Theory, Elsevier, vol. 183(C), pages 1057-1093.
    7. Florian Hoffmann & Roman Inderst & Marco Ottaviani, 2020. "Persuasion Through Selective Disclosure: Implications for Marketing, Campaigning, and Privacy Regulation," Management Science, INFORMS, vol. 66(11), pages 4958-4979, November.
    8. Stefan Terstiege & Cédric Wasser, 2018. "Buyer-Optimal Robust Information Structures," CRC TR 224 Discussion Paper Series crctr224_2018_034, University of Bonn and University of Mannheim, Germany.
    9. Seungjin Han, 2019. "General Competing Mechanisms with Frictions," Department of Economics Working Papers 2019-09, McMaster University.
    10. Mustafa Dogan & Ju Hu, 2022. "Consumer search and optimal information," RAND Journal of Economics, RAND Corporation, vol. 53(2), pages 386-403, June.
    11. Zhou, Jidong, 2021. "Mixed bundling in oligopoly markets," Journal of Economic Theory, Elsevier, vol. 194(C).
    12. Mark Whitmeyer, 2020. "Persuasion Produces the (Diamond) Paradox," Papers 2011.13900, arXiv.org, revised Apr 2021.
    13. Zhao, Ju & Qiu, Ju & Zhou, Yong-Wu & Hu, Xiao-Jian & Yang, Ai-Feng, 2020. "Quality disclosure in the presence of strategic consumers," Journal of Retailing and Consumer Services, Elsevier, vol. 55(C).
    14. Wu, Jiemai, 2020. "Non-competing persuaders," European Economic Review, Elsevier, vol. 127(C).
    15. de Pedraza, Pablo & Vollbracht, Ian, 2020. "The Semicircular Flow of the Data Economy and the Data Sharing Laffer curve," GLO Discussion Paper Series 515, Global Labor Organization (GLO).

  4. Jose Apesteguia & Miguel A. Ballester & Jay Lu, 2017. "Single‐Crossing Random Utility Models," Econometrica, Econometric Society, vol. 85, pages 661-674, March.

    Cited by:

    1. Heufer, Jan & van Bruggen, Paul & Yang, Jingni, 2020. "Giving According to Agreement," Discussion Paper 2020-035, Tilburg University, Center for Economic Research.
    2. Natalia Lazzati & John K.-H. Quah & Koji Shirai, 2018. "Nonparametric analysis of monotone choice," Discussion Paper Series 184, School of Economics, Kwansei Gakuin University.
    3. Levon Barseghyan & Francesca Molinari & Matthew Thirkettle, 2020. "Discrete choice under risk with limited consideration," CeMMAP working papers CWP28/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Carlos Alós-Ferrer & Ernst Fehr & Nick Netzer, 2018. "Time will tell: recovering preferences when choices are noisy," ECON - Working Papers 306, Department of Economics - University of Zurich, revised Jun 2020.
    5. Mira Frick & Ryota Iijima & Tomasz Strzalecki, 2019. "Dynamic Random Utility," Econometrica, Econometric Society, vol. 87(6), pages 1941-2002, November.
    6. Roy Allen & Pawel Dziewulski & John Rehbeck, 2019. "Revealed Statistical Consumer Theory," University of Western Ontario, Departmental Research Report Series 20195, University of Western Ontario, Department of Economics.
    7. Duffy, Sean & Smith, John, 2020. "An economist and a psychologist form a line: What can imperfect perception of length tell us about stochastic choice?," MPRA Paper 99417, University Library of Munich, Germany.
    8. Matheus Costa & Paulo Henrique Ramos & Gil Riella, 2020. "Single-crossing choice correspondences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 54(1), pages 69-86, January.
    9. Kashaev, Nail & Aguiar, Victor H., 2022. "A random attention and utility model," Journal of Economic Theory, Elsevier, vol. 204(C).
    10. Duffy, Sean & Gussman, Steven & Smith, John, 2019. "Judgments of length in the economics laboratory: Are there brains in choice?," MPRA Paper 93126, University Library of Munich, Germany.
    11. Guo, Liang, 2021. "Contextual deliberation and the choice-valuation preference reversal," Journal of Economic Theory, Elsevier, vol. 195(C).
    12. Duffy, Sean & Gussman, Steven & Smith, John, 2021. "Visual judgments of length in the economics laboratory: Are there brains in stochastic choice?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 93(C).
    13. Lu, Jay & Saito, Kota, 2018. "Random intertemporal choice," Journal of Economic Theory, Elsevier, vol. 177(C), pages 780-815.
    14. Jose Apesteguia & Miguel A. Ballester, 2016. "Stochastic representatitve agent," Economics Working Papers 1536, Department of Economics and Business, Universitat Pompeu Fabra.
    15. Victor H. Aguiar & Maria Jose Boccardi & Nail Kashaev & Jeongbin Kim, 2018. "Random Utility and Limited Consideration," Papers 1812.09619, arXiv.org, revised Jul 2022.
    16. Andrew Caplin & Mark Dean & John Leahy, 2017. "Rationally Inattentive Behavior: Characterizing and Generalizing Shannon Entropy," NBER Working Papers 23652, National Bureau of Economic Research, Inc.
    17. Turansick, Christopher, 2022. "Identification in the random utility model," Journal of Economic Theory, Elsevier, vol. 203(C).
    18. D. Pennesi, 2016. "Intertemporal discrete choice," Working Papers wp1061, Dipartimento Scienze Economiche, Universita' di Bologna.
    19. Piermont, Evan, 2022. "Disentangling strict and weak choice in random expected utility models," Journal of Economic Theory, Elsevier, vol. 202(C).
    20. Demirkan, Yusufcan & Kimya, Mert, 2020. "Hazard rate, stochastic choice and consideration sets," Journal of Mathematical Economics, Elsevier, vol. 87(C), pages 142-150.
    21. Yaron Azrieli & John Rehbeck, 2022. "Marginal stochastic choice," Papers 2208.08492, arXiv.org.
    22. D. Pennesi, 2016. "Deciding fast and slow," Working Papers wp1082, Dipartimento Scienze Economiche, Universita' di Bologna.
    23. Manzini, Paola & Mariotti, Marco, 2018. "Dual random utility maximisation," Journal of Economic Theory, Elsevier, vol. 177(C), pages 162-182.

  5. Jay Lu, 2016. "Random Choice and Private Information," Econometrica, Econometric Society, vol. 84, pages 1983-2027, November.

    Cited by:

    1. Jetlir Duraj & Yi-Hsuan Lin, 2022. "Costly information and random choice," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 74(1), pages 135-159, July.
    2. Youichiro Higashi & Kazuya Hyogo & Norio Takeoka, 2020. "Costly Subjective Learning," KIER Working Papers 1040, Kyoto University, Institute of Economic Research.
    3. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2020. "Multinomial logit processes and preference discovery: inside and outside the black box," Papers 2004.13376, arXiv.org, revised Jan 2021.
    4. Ellis, Andrew, 2017. "Foundations for optimal inattention," LSE Research Online Documents on Economics 85334, London School of Economics and Political Science, LSE Library.
    5. Lin, Yi-Hsuan, 2022. "Stochastic choice and rational inattention," Journal of Economic Theory, Elsevier, vol. 202(C).
    6. Lang, Ruitian, 2019. "Try before you buy: A theory of dynamic information acquisition," Journal of Economic Theory, Elsevier, vol. 183(C), pages 1057-1093.
    7. Larry G. Epstein & Shaolin Ji, 2017. "Optimal Learning under Robustness and Time-Consistency," Papers 1708.01890, arXiv.org, revised Mar 2019.
    8. Markus Eyting & Patrick Schmidt, 2019. "Belief Elicitation with Multiple Point Predictions," Working Papers 1818, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 16 Nov 2020.
    9. Duffy, Sean & Gussman, Steven & Smith, John, 2021. "Visual judgments of length in the economics laboratory: Are there brains in stochastic choice?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 93(C).
    10. Lu, Jay & Saito, Kota, 2018. "Random intertemporal choice," Journal of Economic Theory, Elsevier, vol. 177(C), pages 780-815.
    11. Ismaël Rafaï & Sébastien Duchêne & Eric Guerci & Irina Basieva & Andrei Khrennikov, 2022. "The triple-store experiment: a first simultaneous test of classical and quantum probabilities in choice over menus," Post-Print hal-03227276, HAL.
    12. Haoge Chang & Yusuke Narita & Kota Saito, 2022. "Approximating Choice Data by Discrete Choice Models," Papers 2205.01882, arXiv.org, revised Nov 2022.
    13. Edi Karni, 2020. "A mechanism for the elicitation of second-order belief and subjective information structure," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(1), pages 217-232, February.
    14. Daniele Pennesi, 2020. "Identity and information acquisition," Carlo Alberto Notebooks 610, Collegio Carlo Alberto, revised 2021.
    15. Nick Saponara, 2018. "Bayesian optimism," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(2), pages 375-406, August.
    16. David Dillenberger & Philipp Sadowski, 2019. "Stable behavior and generalized partition," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(2), pages 285-302, September.
    17. Piermont, Evan, 2022. "Disentangling strict and weak choice in random expected utility models," Journal of Economic Theory, Elsevier, vol. 202(C).
    18. Christopher Turansick, 2021. "Identification in the Random Utility Model," Papers 2102.05570, arXiv.org, revised May 2022.
    19. Larry G. Epstein & Shaolin Ji, 2017. "Optimal Learning and Ellsberg’s Urns," Boston University - Department of Economics - Working Papers Series WP2017-010, Boston University - Department of Economics.
    20. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci, 2020. "Multinomial logit processes and preference discovery: outside and inside the black box," Working Papers 663, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    21. Tommaso Denti, 2022. "Posterior Separable Cost of Information," American Economic Review, American Economic Association, vol. 112(10), pages 3215-3259, October.
    22. Emerson Melo, 2021. "Learning In Random Utility Models Via Online Decision Problems," CAEPR Working Papers 2022-003 Classification-D, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    23. Andrew Ellis & Heidi Christina Thysen, 2021. "Subjective Causality in Choice," Papers 2106.05957, arXiv.org, revised Oct 2021.
    24. Jetlir Duraj & Yi-Hsuan Lin, 2022. "Identification and welfare evaluation in sequential sampling models," Theory and Decision, Springer, vol. 92(2), pages 407-431, March.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Rankings

This author is among the top 5% authors according to these criteria:
  1. Number of Journal Pages, Weighted by Recursive Impact Factor
  2. Number of Journal Pages, Weighted by Number of Authors and Simple Impact Factors
  3. Number of Journal Pages, Weighted by Number of Authors and Recursive Impact Factors

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 2 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-CMP: Computational Economics (1) 2022-01-24. Author is listed
  2. NEP-COM: Industrial Competition (1) 2015-12-01. Author is listed
  3. NEP-DGE: Dynamic General Equilibrium (1) 2015-12-01. Author is listed
  4. NEP-MKT: Marketing (1) 2015-12-01. Author is listed
  5. NEP-REG: Regulation (1) 2022-01-24. Author is listed

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Jay Lu should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.