IDEAS home Printed from https://ideas.repec.org/p/igi/igierp/615.html
   My bibliography  Save this paper

Multinomial logit processes and preference discovery: inside and outside the black box

Author

Listed:
  • S. Cerreia-Vioglio
  • F. Maccheroni
  • M. Marinacci
  • A. Rustichini

Abstract

We provide both an axiomatic and a neuropsychological characterization of the dependence of choice probabilities on time in the softmax (or Multinomial Logit Process) form: MLP is the most widely used model of preference discovery in all fields of decision making, from Quantal Response Equilibrium to Discrete Choice Analysis, from Psychophysics and Neuroscience to Combinatorial Optimization. Our axiomatic characterization of softmax permits to empirically test its descriptive validity and to better understand its conceptual underpinnings as a theory of agents'rationality. Our neuropsychological foundation provides a computational model that may explain softmax emergence in human behavior and that naturally extends to multialternative choice the classical Diffusion Model paradigm of binary choice. These complementary approaches provide a complete perspective on softmaximization as a model of preference discovery, both in terms of internal (neuropsychological) causes and external (behavioral) effect. Keywords: Discrete Choice Analysis, Drift Diffusion Model, Luce Model, Metropolis Algorithm, Multinomial Logit Model, Quantal Response Equilibrium

Suggested Citation

  • S. Cerreia-Vioglio & F. Maccheroni & M. Marinacci & A. Rustichini, 2017. "Multinomial logit processes and preference discovery: inside and outside the black box," Working Papers 615, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  • Handle: RePEc:igi:igierp:615
    as

    Download full text from publisher

    File URL: https://repec.unibocconi.it/igier/igi/wp/2017/615.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drew Fudenberg & Philipp Strack & Tomasz Strzalecki, 2018. "Speed, Accuracy, and the Optimal Timing of Choices," American Economic Review, American Economic Association, vol. 108(12), pages 3651-3684, December.
    2. Aldo Rustichini & Katherine E. Conen & Xinying Cai & Camillo Padoa-Schioppa, 2017. "Optimal coding and neuronal adaptation in economic decisions," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    3. Jakub Steiner & Colin Stewart & Filip Matějka, 2017. "Rational Inattention Dynamics: Inertia and Delay in Decision‐Making," Econometrica, Econometric Society, vol. 85, pages 521-553, March.
    4. Carlos Alós-Ferrer & Ernst Fehr & Nick Netzer, 2021. "Time Will Tell: Recovering Preferences When Choices Are Noisy," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1828-1877.
    5. Jörg Rieskamp & Jerome R. Busemeyer & Barbara A. Mellers, 2006. "Extending the Bounds of Rationality: Evidence and Theories of Preferential Choice," Journal of Economic Literature, American Economic Association, vol. 44(3), pages 631-661, September.
    6. Marina Agranov & Andrew Caplin & Chloe Tergiman, 2015. "Naive play and the process of choice in guessing games," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 1(2), pages 146-157, December.
    7. Mira Frick & Ryota Iijima & Tomasz Strzalecki, 2019. "Dynamic Random Utility," Econometrica, Econometric Society, vol. 87(6), pages 1941-2002, November.
    8. Filip Matêjka & Alisdair McKay, 2015. "Rational Inattention to Discrete Choices: A New Foundation for the Multinomial Logit Model," American Economic Review, American Economic Association, vol. 105(1), pages 272-298, January.
    9. Scott J. Savage & Donald M. Waldman, 2008. "Learning and fatigue during choice experiments: a comparison of online and mail survey modes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 351-371.
    10. N. Georgescu-Roegen, 1936. "The Pure Theory of Consumers Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 50(4), pages 545-593.
    11. Xavier Gabaix & David Laibson & Guillermo Moloche & Stephen Weinberg, 2006. "Costly Information Acquisition: Experimental Analysis of a Boundedly Rational Model," American Economic Review, American Economic Association, vol. 96(4), pages 1043-1068, September.
    12. Aaron M. Bornstein & Mel W. Khaw & Daphna Shohamy & Nathaniel D. Daw, 2017. "Reminders of past choices bias decisions for reward in humans," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    13. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    14. Patrizio Frederic & Mario Di Bacco & Frank Lad, 2012. "Combining expert probabilities using the product of odds," Theory and Decision, Springer, vol. 73(4), pages 605-619, October.
    15. Louviere,Jordan J. & Hensher,David A. & Swait,Joffre D. With contributions by-Name:Adamowicz,Wiktor, 2000. "Stated Choice Methods," Cambridge Books, Cambridge University Press, number 9780521788304, October.
    16. McKelvey, Richard D & Palfrey, Thomas R, 1992. "An Experimental Study of the Centipede Game," Econometrica, Econometric Society, vol. 60(4), pages 803-836, July.
    17. S. Cerreia-Vioglio & F. Maccheroni & M. Marinacci & A. Rustichini, 2016. "Law of Demand and Forced Choice," Working Papers 593, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    18. Patrick Suppes & Muriel Winet, 1955. "An Axiomatization of Utility Based on the Notion of Utility Differences," Management Science, INFORMS, vol. 1(3-4), pages 259-270, 04-07.
    19. Jacob K. Goeree & Charles A. Holt & Thomas R. Palfrey, 2016. "Quantal Response Equilibrium:A Stochastic Theory of Games," Economics Books, Princeton University Press, edition 1, number 10743.
    20. Steven J. Luck & Edward K. Vogel, 1997. "The capacity of visual working memory for features and conjunctions," Nature, Nature, vol. 390(6657), pages 279-281, November.
    21. Huseynov, Samir & Krajbich, Ian & Palma, Marco A., 2018. "No Time to Think: Food Decision-Making under Time Pressure," 2018 Annual Meeting, August 5-7, Washington, D.C. 274135, Agricultural and Applied Economics Association.
    22. Drew Fudenberg & Tomasz Strzalecki, 2015. "Dynamic Logit With Choice Aversion," Econometrica, Econometric Society, vol. 83, pages 651-691, March.
    23. Frederick Mosteller & Philip Nogee, 1951. "An Experimental Measurement of Utility," Journal of Political Economy, University of Chicago Press, vol. 59(5), pages 371-371.
    24. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, October.
    25. Jay Lu, 2016. "Random Choice and Private Information," Econometrica, Econometric Society, vol. 84, pages 1983-2027, November.
    26. Richard E. Quandt, 1956. "A Probabilistic Theory of Consumer Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(4), pages 507-536.
    27. Elena Reutskaja & Rosemarie Nagel & Colin F. Camerer & Antonio Rangel, 2011. "Search Dynamics in Consumer Choice under Time Pressure: An Eye-Tracking Study," American Economic Review, American Economic Association, vol. 101(2), pages 900-926, April.
    28. Campbell, Danny & Boeri, Marco & Doherty, Edel & George Hutchinson, W., 2015. "Learning, fatigue and preference formation in discrete choice experiments," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 345-363.
    29. Edward K. Vogel & Maro G. Machizawa, 2004. "Neural activity predicts individual differences in visual working memory capacity," Nature, Nature, vol. 428(6984), pages 748-751, April.
    30. Clithero, John A., 2018. "Improving out-of-sample predictions using response times and a model of the decision process," Journal of Economic Behavior & Organization, Elsevier, vol. 148(C), pages 344-375.
    31. Drew Fudenberg & Whitney Newey & Philipp Strack & Tomasz Strzalecki, 2020. "Testing the drift-diffusion model," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(52), pages 33141-33148, December.
    32. Andrew Caplin & Mark Dean, 2015. "Revealed Preference, Rational Inattention, and Costly Information Acquisition," American Economic Review, American Economic Association, vol. 105(7), pages 2183-2203, July.
    33. Andrew Caplin & Mark Dean & John Leahy, 2019. "Rational Inattention, Optimal Consideration Sets, and Stochastic Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1061-1094.
    34. Chao Chen & Caspar Chorus & Eric Molin & Bert Wee, 2016. "Effects of task complexity and time pressure on activity-travel choices: heteroscedastic logit model and activity-travel simulator experiment," Transportation, Springer, vol. 43(3), pages 455-472, May.
    35. Bhat, Chandra R., 1995. "A heteroscedastic extreme value model of intercity travel mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 471-483, December.
    36. , & ,, 2011. "Search, choice, and revealed preference," Theoretical Economics, Econometric Society, vol. 6(1), January.
    37. Paulo Natenzon, 2019. "Random Choice and Learning," Journal of Political Economy, University of Chicago Press, vol. 127(1), pages 419-457.
    38. Fosgerau, Mogens & Melo, Emerson & Shum, Matt, 2017. "Discrete Choice and Rational Inattention: a General Equivalence Result�," MPRA Paper 76605, University Library of Munich, Germany.
    39. Simon P. Anderson & Jacob K. Goeree & Charles A. Holt, 2004. "Noisy Directional Learning and the Logit Equilibrium," Scandinavian Journal of Economics, Wiley Blackwell, vol. 106(3), pages 581-602, October.
    40. Dewan, Ambuj & Neligh, Nathaniel, 2020. "Estimating information cost functions in models of rational inattention," Journal of Economic Theory, Elsevier, vol. 187(C).
    41. Ernst Fehr & Antonio Rangel, 2011. "Neuroeconomic Foundations of Economic Choice--Recent Advances," Journal of Economic Perspectives, American Economic Association, vol. 25(4), pages 3-30, Fall.
    42. repec:cup:judgdm:v:5:y:2010:i:6:p:437-449 is not listed on IDEAS
    43. Michael Woodford, 2014. "Stochastic Choice: An Optimizing Neuroeconomic Model," American Economic Review, American Economic Association, vol. 104(5), pages 495-500, May.
    44. Ryan Webb, 2019. "The (Neural) Dynamics of Stochastic Choice," Management Science, INFORMS, vol. 65(1), pages 230-255, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mira Frick & Ryota Iijima & Tomasz Strzalecki, 2019. "Dynamic Random Utility," Econometrica, Econometric Society, vol. 87(6), pages 1941-2002, November.
    2. Emerson Melo, 2021. "Learning In Random Utility Models Via Online Decision Problems," CAEPR Working Papers 2022-003 Classification-D, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    3. Pennesi, Daniele, 2021. "Intertemporal discrete choice," Journal of Economic Behavior & Organization, Elsevier, vol. 186(C), pages 690-706.
    4. Emerson Melo, 2021. "Learning in Random Utility Models Via Online Decision Problems," Papers 2112.10993, arXiv.org, revised Aug 2022.
    5. Federico Echenique & Kota Saito, 2019. "General Luce model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 811-826, November.
    6. Doğan, Serhat & Yıldız, Kemal, 2021. "Odds supermodularity and the Luce rule," Games and Economic Behavior, Elsevier, vol. 126(C), pages 443-452.
    7. Carlo Baldassi & Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Marco Pirazzini, 2020. "A Behavioral Characterization of the Drift Diffusion Model and Its Multialternative Extension for Choice Under Time Pressure," Management Science, INFORMS, vol. 66(11), pages 5075-5093, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci, 2020. "Multinomial logit processes and preference discovery: outside and inside the black box," Working Papers 663, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    2. Duffy, Sean & Gussman, Steven & Smith, John, 2021. "Visual judgments of length in the economics laboratory: Are there brains in stochastic choice?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 93(C).
    3. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2023. "Multinomial Logit Processes and Preference Discovery: Inside and Outside the Black Box," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(3), pages 1155-1194.
    4. Carlo Baldassi & Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Marco Pirazzini, 2020. "A Behavioral Characterization of the Drift Diffusion Model and Its Multialternative Extension for Choice Under Time Pressure," Management Science, INFORMS, vol. 66(11), pages 5075-5093, November.
    5. Duffy, Sean & Smith, John, 2020. "An economist and a psychologist form a line: What can imperfect perception of length tell us about stochastic choice?," MPRA Paper 99417, University Library of Munich, Germany.
    6. Carlos Alós-Ferrer & Michele Garagnani, 2022. "Strength of preference and decisions under risk," Journal of Risk and Uncertainty, Springer, vol. 64(3), pages 309-329, June.
    7. Hébert, Benjamin & Woodford, Michael, 2023. "Rational inattention when decisions take time," Journal of Economic Theory, Elsevier, vol. 208(C).
    8. Sean, Duffy & John, Smith, 2023. "Stochastic choice and imperfect judgments of line lengths: What is hiding in the noise?," MPRA Paper 116382, University Library of Munich, Germany.
    9. Duffy, Sean & Gussman, Steven & Smith, John, 2019. "Judgments of length in the economics laboratory: Are there brains in choice?," MPRA Paper 93126, University Library of Munich, Germany.
    10. Clithero, John A., 2018. "Response times in economics: Looking through the lens of sequential sampling models," Journal of Economic Psychology, Elsevier, vol. 69(C), pages 61-86.
    11. Cary Frydman & Ian Krajbich, 2022. "Using Response Times to Infer Others’ Private Information: An Application to Information Cascades," Management Science, INFORMS, vol. 68(4), pages 2970-2986, April.
    12. Andrew Schotter & Isabel Trevino, 2021. "Is response time predictive of choice? An experimental study of threshold strategies," Experimental Economics, Springer;Economic Science Association, vol. 24(1), pages 87-117, March.
    13. Fedor Sandomirskiy & Omer Tamuz, 2023. "Decomposable Stochastic Choice," Papers 2312.04827, arXiv.org, revised May 2024.
    14. Emerson Melo, 2021. "Learning In Random Utility Models Via Online Decision Problems," CAEPR Working Papers 2022-003 Classification-D, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    15. Bartosz Maćkowiak & Filip Matějka & Mirko Wiederholt, 2023. "Rational Inattention: A Review," Journal of Economic Literature, American Economic Association, vol. 61(1), pages 226-273, March.
    16. Dewan, Ambuj & Neligh, Nathaniel, 2020. "Estimating information cost functions in models of rational inattention," Journal of Economic Theory, Elsevier, vol. 187(C).
    17. Carlos Alós-Ferrer & Ernst Fehr & Nick Netzer, 2021. "Time Will Tell: Recovering Preferences When Choices Are Noisy," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1828-1877.
    18. David J. Cooper & Ian Krajbich & Charles N. Noussair, 2019. "Choice-Process Data in Experimental Economics," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 1-13, August.
    19. Pennesi, Daniele, 2021. "Intertemporal discrete choice," Journal of Economic Behavior & Organization, Elsevier, vol. 186(C), pages 690-706.
    20. Victor H. Aguiar & Maria Jose Boccardi & Nail Kashaev & Jeongbin Kim, 2023. "Random utility and limited consideration," Quantitative Economics, Econometric Society, vol. 14(1), pages 71-116, January.

    More about this item

    Keywords

    discrete choice analysis; drift diffusion model; luce model; metropolis algorithm; multinomial logit model; quantal response equilibrium;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igi:igierp:615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.igier.unibocconi.it/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.