IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.04957.html
   My bibliography  Save this paper

Training and Testing with Multiple Splits: A Central Limit Theorem for Split-Sample Estimators

Author

Listed:
  • Bruno Fava

Abstract

As predictive algorithms grow in popularity, using the same dataset to both train and test a new model has become routine across research, policy, and industry. Sample-splitting attains valid inference on model properties by using separate subsamples to estimate the model and to evaluate it. However, this approach has two drawbacks, since each task uses only part of the data, and different splits can lead to widely different estimates. Averaging across multiple splits, I develop an inference approach that uses more data for training, uses the entire sample for testing, and improves reproducibility. I address the statistical dependence from reusing observations across splits by proving a new central limit theorem for a large class of split-sample estimators under arguably mild and general conditions. Importantly, I make no restrictions on model complexity or convergence rates. I show that confidence intervals based on the normal approximation are valid for many applications, but may undercover in important cases of interest, such as comparing the performance between two models. I develop a new inference approach for such cases, explicitly accounting for the dependence across splits. Moreover, I provide a measure of reproducibility for p-values obtained from split-sample estimators. Finally, I apply my results to two important problems in development and public economics: predicting poverty and learning heterogeneous treatment effects in randomized experiments. I show that my inference approach with repeated cross-fitting achieves better power than existing alternatives, often enough to reveal statistical significance that would otherwise be missed.

Suggested Citation

  • Bruno Fava, 2025. "Training and Testing with Multiple Splits: A Central Limit Theorem for Split-Sample Estimators," Papers 2511.04957, arXiv.org, revised Nov 2025.
  • Handle: RePEc:arx:papers:2511.04957
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.04957
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.04957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.