IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.11486.html
   My bibliography  Save this paper

Robust and Agnostic Learning of Conditional Distributional Treatment Effects

Author

Listed:
  • Nathan Kallus
  • Miruna Oprescu

Abstract

The conditional average treatment effect (CATE) is the best measure of individual causal effects given baseline covariates. However, the CATE only captures the (conditional) average, and can overlook risks and tail events, which are important to treatment choice. In aggregate analyses, this is usually addressed by measuring the distributional treatment effect (DTE), such as differences in quantiles or tail expectations between treatment groups. Hypothetically, one can similarly fit conditional quantile regressions in each treatment group and take their difference, but this would not be robust to misspecification or provide agnostic best-in-class predictions. We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a class of problems that includes conditional quantile treatment effects, conditional super-quantile treatment effects, and conditional treatment effects on coherent risk measures given by $f$-divergences. Our method is based on constructing a special pseudo-outcome and regressing it on covariates using any regression learner. Our method is model-agnostic in that it can provide the best projection of CDTE onto the regression model class. Our method is robust in that even if we learn these nuisances nonparametrically at very slow rates, we can still learn CDTEs at rates that depend on the class complexity and even conduct inferences on linear projections of CDTEs. We investigate the behavior of our proposal in simulations, as well as in a case study of 401(k) eligibility effects on wealth.

Suggested Citation

  • Nathan Kallus & Miruna Oprescu, 2022. "Robust and Agnostic Learning of Conditional Distributional Treatment Effects," Papers 2205.11486, arXiv.org, revised Feb 2023.
  • Handle: RePEc:arx:papers:2205.11486
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.11486
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    2. Marianne P. Bitler & Jonah B. Gelbach & Hilary W. Hoynes, 2006. "What Mean Impacts Miss: Distributional Effects of Welfare Reform Experiments," American Economic Review, American Economic Association, vol. 96(4), pages 988-1012, September.
    3. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    4. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
    5. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    6. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    7. Victor Chernozhukov & Ivan Fernandez-Val & Martin Weidner, 2018. "Network and panel quantile effects via distribution regression," CeMMAP working papers CWP21/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Guido Imbens & Nathan Kallus & Xiaojie Mao, 2021. "Controlling for Unmeasured Confounding in Panel Data Using Minimal Bridge Functions: From Two-Way Fixed Effects to Factor Models," Papers 2108.03849, arXiv.org.
    9. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    12. Victor Chernozhukov & Christian Hansen, 2004. "The Effects of 401(K) Participation on the Wealth Distribution: An Instrumental Quantile Regression Analysis," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 735-751, August.
    13. Maike Hohberg & Peter Pütz & Thomas Kneib, 2020. "Treatment effects beyond the mean using distributional regression: Methods and guidance," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-29, February.
    14. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
    15. Nathan Kallus, 2022. "Treatment Effect Risk: Bounds and Inference," Papers 2201.05893, arXiv.org, revised Jul 2022.
    16. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    17. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    18. Khashayar Khosravi & Greg Lewis & Vasilis Syrgkanis, 2019. "Non-Parametric Inference Adaptive to Intrinsic Dimension," Papers 1901.03719, arXiv.org, revised Jun 2019.
    19. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-596, May.
    20. Jacob Dorn & Kevin Guo & Nathan Kallus, 2021. "Doubly-Valid/Doubly-Sharp Sensitivity Analysis for Causal Inference with Unmeasured Confounding," Papers 2112.11449, arXiv.org, revised Jul 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathan Kallus, 2022. "Treatment Effect Risk: Bounds and Inference," Papers 2201.05893, arXiv.org, revised Jul 2022.
    2. Nathan Kallus, 2023. "Treatment Effect Risk: Bounds and Inference," Management Science, INFORMS, vol. 69(8), pages 4579-4590, August.
    3. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    4. Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2020. "Adversarial Estimation of Riesz Representers," Papers 2101.00009, arXiv.org, revised Jan 2024.
    5. Khashayar Khosravi & Greg Lewis & Vasilis Syrgkanis, 2019. "Non-Parametric Inference Adaptive to Intrinsic Dimension," Papers 1901.03719, arXiv.org, revised Jun 2019.
    6. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    7. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    8. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    9. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    10. Neng-Chieh Chang, 2020. "The Mode Treatment Effect," Papers 2007.11606, arXiv.org.
    11. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    12. Alejandro Sanchez-Becerra, 2023. "Robust inference for the treatment effect variance in experiments using machine learning," Papers 2306.03363, arXiv.org.
    13. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    14. Qizhao Chen & Vasilis Syrgkanis & Morgane Austern, 2022. "Debiased Machine Learning without Sample-Splitting for Stable Estimators," Papers 2206.01825, arXiv.org, revised Nov 2022.
    15. Strittmatter, Anthony, 2023. "What is the value added by using causal machine learning methods in a welfare experiment evaluation?," Labour Economics, Elsevier, vol. 84(C).
    16. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    17. Anthony Strittmatter, 2018. "What Is the Value Added by Using Causal Machine Learning Methods in a Welfare Experiment Evaluation?," Papers 1812.06533, arXiv.org, revised Dec 2021.
    18. Nathan Kallus, 2022. "What's the Harm? Sharp Bounds on the Fraction Negatively Affected by Treatment," Papers 2205.10327, arXiv.org, revised Nov 2022.
    19. Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
    20. Andrew Bennett & Nathan Kallus & Xiaojie Mao & Whitney Newey & Vasilis Syrgkanis & Masatoshi Uehara, 2022. "Inference on Strongly Identified Functionals of Weakly Identified Functions," Papers 2208.08291, arXiv.org, revised Jun 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.11486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.