Author
Listed:
- Zeqi Wu
- Meilin Wang
- Wei Huang
- Zheng Zhang
Abstract
Estimation and inference of treatment effects under unconfounded treatment assignments often suffer from bias and the `curse of dimensionality' due to the nonparametric estimation of nuisance parameters for high-dimensional confounders. Although debiased state-of-the-art methods have been proposed for binary treatments under particular treatment models, they can be unstable for small sample sizes. Moreover, directly extending them to general treatment models can lead to computational complexity. We propose a balanced neural networks weighting method for general treatment models, which leverages deep neural networks to alleviate the curse of dimensionality while retaining optimal covariate balance through calibration, thereby achieving debiased and robust estimation. Our method accommodates a wide range of treatment models, including average, quantile, distributional, and asymmetric least squares treatment effects, for discrete, continuous, and mixed treatments. Under regularity conditions, we show that our estimator achieves rate double robustness and $\sqrt{N}$-asymptotic normality, and its asymptotic variance achieves the semiparametric efficiency bound. We further develop a statistical inference procedure based on weighted bootstrap, which avoids estimating the efficient influence/score functions. Simulation results reveal that the proposed method consistently outperforms existing alternatives, especially when the sample size is small. Applications to the 401(k) dataset and the Mother's Significant Features dataset further illustrate the practical value of the method for estimating both average and quantile treatment effects under binary and continuous treatments, respectively.
Suggested Citation
Zeqi Wu & Meilin Wang & Wei Huang & Zheng Zhang, 2025.
"A New and Efficient Debiased Estimation of General Treatment Models by Balanced Neural Networks Weighting,"
Papers
2507.04044, arXiv.org.
Handle:
RePEc:arx:papers:2507.04044
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.04044. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.