IDEAS home Printed from https://ideas.repec.org/f/pka336.html
   My authors  Follow this author

Ilze Kalnina

Personal Details

First Name:Ilze
Middle Name:
Last Name:Kalnina
Suffix:
RePEc Short-ID:pka336
http://www4.ncsu.edu/~ikalnin/
Terminal Degree:2009 Economics Department; London School of Economics (LSE) (from RePEc Genealogy)

Affiliation

Department of Economics
Poole College of Management
North Carolina State University

Raleigh, North Carolina (United States)
http://poole.ncsu.edu/index-exp.php/economics/economics

: (919) 515-3274


RePEc:edi:dencsus (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Ilze KALNINA & Dacheng XIU, 2015. "Nonparametric Estimation of the Leverage Effect : A Trade-off between Robustness and Efficiency," Cahiers de recherche 09-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  2. Ilze KALNINA, 2015. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Cahiers de recherche 13-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  3. Ilze KALNINA & Kokouvi TEWOU, 2015. "Cross-sectional Dependence in Idiosyncratic Volatility," Cahiers de recherche 08-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  4. Kalnina, Ilze & Linton, Oliver, 2007. "Inference about realized volatility using infill subsampling," LSE Research Online Documents on Economics 4411, London School of Economics and Political Science, LSE Library.
  5. Kalnina, Ilze & Linton, Oliver, 2006. "Estimating quadratic variation consistently in the presence of correlated measurement error," LSE Research Online Documents on Economics 4413, London School of Economics and Political Science, LSE Library.
  6. Ilze Kalnina & Oliver Linton, 2006. "Estimating Quadratic VariationConsistently in thePresence of Correlated MeasurementError," STICERD - Econometrics Paper Series 509, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.

Articles

  1. Ilze Kalnina & Natalia Sizova, 2015. "Estimation of volatility measures using high frequency data (in Russian)," Quantile, Quantile, issue 13, pages 3-14, May.
  2. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.
  3. Kalnina, Ilze & Linton, Oliver, 2008. "Estimating quadratic variation consistently in the presence of endogenous and diurnal measurement error," Journal of Econometrics, Elsevier, vol. 147(1), pages 47-59, November.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Ilze KALNINA & Dacheng XIU, 2015. "Nonparametric Estimation of the Leverage Effect : A Trade-off between Robustness and Efficiency," Cahiers de recherche 09-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Bibinger, Markus & Neely, Christopher J. & Winkelmann, Lars, 2017. "Estimation of the discontinuous leverage effect: Evidence from the NASDAQ order book," Working Papers 2017-12, Federal Reserve Bank of St. Louis.

  2. Ilze KALNINA, 2015. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Cahiers de recherche 13-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.

  3. Ilze KALNINA & Kokouvi TEWOU, 2015. "Cross-sectional Dependence in Idiosyncratic Volatility," Cahiers de recherche 08-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Ilze KALNINA, 2015. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Cahiers de recherche 13-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

  4. Kalnina, Ilze & Linton, Oliver, 2007. "Inference about realized volatility using infill subsampling," LSE Research Online Documents on Economics 4411, London School of Economics and Political Science, LSE Library.

    Cited by:

    1. Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.
    2. Jean Jacod & Yingying Li & Per A. Mykland & Mark Podolskij & Mathias Vetter, 2007. "Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9," CREATES Research Papers 2007-43, Department of Economics and Business Economics, Aarhus University.
    3. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2007. "Microstructure noise in the continuous case: the pre-averaging approach," Technical Reports 2007,41, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.

  5. Kalnina, Ilze & Linton, Oliver, 2006. "Estimating quadratic variation consistently in the presence of correlated measurement error," LSE Research Online Documents on Economics 4413, London School of Economics and Political Science, LSE Library.

    Cited by:

    1. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Series Working Papers 604, University of Oxford, Department of Economics.
    2. Kalnina, Ilze & Linton, Oliver, 2007. "Inference about realized volatility using infill subsampling," LSE Research Online Documents on Economics 4411, London School of Economics and Political Science, LSE Library.
    3. Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
    4. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
    5. Neil Shephard & Ole E. Barndorff-Nielsen, 2006. "Subsampling realised kernels," Economics Series Working Papers 278, University of Oxford, Department of Economics.
    6. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.
    7. Elezovic, Suad, 2009. "Functional modelling of volatility in the Swedish limit order book," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2107-2118, April.
    8. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.

Articles

  1. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.

    Cited by:

    1. Rasmus Tangsgaard Varneskov, 2011. "Flat-Top Realized Kernel Estimation of Quadratic Covariation with Non-Synchronous and Noisy Asset Prices," CREATES Research Papers 2011-35, Department of Economics and Business Economics, Aarhus University.
    2. Ilze KALNINA, 2015. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Cahiers de recherche 13-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    3. Fulvio Corsi & Francesco Audrino, 2012. "Realized Covariance Tick-by-Tick in Presence of Rounded Time Stamps and General Microstructure Effects," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 10(4), pages 591-616, September.
    4. Ulrich Hounyo & Sílvia Gonçalves & Nour Meddahi, 2016. "Bootstrapping pre-averaged realized volatility under market microstructure noise," CIRANO Working Papers 2016s-25, CIRANO.
    5. Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.
    6. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    7. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    8. Robert Azencott & Peng Ren & Ilya Timofeyev, 2017. "Realized volatility and parametric estimation of Heston SDEs," Papers 1706.04566, arXiv.org.
    9. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 0509. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    10. Ilze KALNINA & Dacheng XIU, 2015. "Nonparametric Estimation of the Leverage Effect : A Trade-off between Robustness and Efficiency," Cahiers de recherche 09-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    11. Rasmus Tangsgaard Varneskov, 2011. "Generalized Flat-Top Realized Kernel Estimation of Ex-Post Variation of Asset Prices Contaminated by Noise," CREATES Research Papers 2011-31, Department of Economics and Business Economics, Aarhus University.
    12. Ikeda, Shin S., 2016. "A bias-corrected estimator of the covariation matrix of multiple security prices when both microstructure effects and sampling durations are persistent and endogenous," Journal of Econometrics, Elsevier, vol. 193(1), pages 203-214.
    13. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.
    14. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.

  2. Kalnina, Ilze & Linton, Oliver, 2008. "Estimating quadratic variation consistently in the presence of endogenous and diurnal measurement error," Journal of Econometrics, Elsevier, vol. 147(1), pages 47-59, November.

    Cited by:

    1. Yuta Koike, 2013. "Limit Theorems for the Pre-averaged Hayashi-Yoshida Estimator with Random Sampling," Global COE Hi-Stat Discussion Paper Series gd12-276, Institute of Economic Research, Hitotsubashi University.
    2. Chen, Richard Y. & Mykland, Per A., 2017. "Model-free approaches to discern non-stationary microstructure noise and time-varying liquidity in high-frequency data," Journal of Econometrics, Elsevier, vol. 200(1), pages 79-103.
    3. Rasmus Tangsgaard Varneskov, 2011. "Flat-Top Realized Kernel Estimation of Quadratic Covariation with Non-Synchronous and Noisy Asset Prices," CREATES Research Papers 2011-35, Department of Economics and Business Economics, Aarhus University.
    4. Richard Y. Chen & Per A. Mykland, 2015. "Model-Free Approaches to Discern Non-Stationary Microstructure Noise and Time-Varying Liquidity in High-Frequency Data," Papers 1512.06159, arXiv.org, revised Jan 2017.
    5. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    6. Li, Yingying & Zhang, Zhiyuan & Zheng, Xinghua, 2013. "Volatility inference in the presence of both endogenous time and microstructure noise," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2696-2727.
    7. Ilze KALNINA, 2015. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Cahiers de recherche 13-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    8. Fangfang Wang, 2016. "An Unbiased Measure of Integrated Volatility in the Frequency Domain," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(2), pages 147-164, March.
    9. Giorgio Mirone, 2906. "Inference from the futures: ranking the noise cancelling accuracy of realized measures," CREATES Research Papers 2017-24, Department of Economics and Business Economics, Aarhus University.
    10. Yoann Potiron & Per Mykland, 2016. "Local Parametric Estimation in High Frequency Data," Papers 1603.05700, arXiv.org, revised Aug 2018.
    11. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
    12. Bibinger, Markus & Hautsch, Nikolaus & Malec, Peter & Reiss, Markus, 2014. "Estimating the spot covariation of asset prices: Statistical theory and empirical evidence," CFS Working Paper Series 477, Center for Financial Studies (CFS).
    13. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    14. Neil Shephard & Ole E. Barndorff-Nielsen, 2006. "Subsampling realised kernels," Economics Series Working Papers 278, University of Oxford, Department of Economics.
    15. Simon Clinet & Yoann Potiron, 2017. "Efficient asymptotic variance reduction when estimating volatility in high frequency data," Papers 1701.01185, arXiv.org, revised Jun 2018.
    16. Zu, Yang & Peter Boswijk, H., 2014. "Estimating spot volatility with high-frequency financial data," Journal of Econometrics, Elsevier, vol. 181(2), pages 117-135.
    17. Liang-Ching Lin & Meihui Guo, 2016. "Optimal restricted quadratic estimator of integrated volatility," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(3), pages 673-703, June.
    18. Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2013. "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns," CREATES Research Papers 2013-07, Department of Economics and Business Economics, Aarhus University.
    19. Park, Sujin & Hong, Seok Young & Linton, Oliver, 2016. "Estimating the quadratic covariation matrix for asynchronously observed high frequency stock returns corrupted by additive measurement error," Journal of Econometrics, Elsevier, vol. 191(2), pages 325-347.
    20. Chaker, Selma, 2017. "On high frequency estimation of the frictionless price: The use of observed liquidity variables," Journal of Econometrics, Elsevier, vol. 201(1), pages 127-143.
    21. Kim Christensen & Mark Podolskij & Nopporn Thamrongrat & Bezirgen Veliyev, 2015. "Inference from high-frequency data: A subsampling approach," CREATES Research Papers 2015-45, Department of Economics and Business Economics, Aarhus University.
    22. Hwang, Eunju & Shin, Dong Wan, 2018. "Two-stage stationary bootstrapping for bivariate average realized volatility matrix under market microstructure noise and asynchronicity," Journal of Econometrics, Elsevier, vol. 202(2), pages 178-195.
    23. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    24. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 0509. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    25. Norman R. Swanson & Valentina Corradi & Walter Distaso, 2011. "Predictive Inference for Integrated Volatility," Departmental Working Papers 201109, Rutgers University, Department of Economics.
    26. Andersen, Torben G. & Cebiroglu, Gökhan & Hautsch, Nikolaus, 2017. "Volatility, information feedback and market microstructure noise: A tale of two regimes," CFS Working Paper Series 569, Center for Financial Studies (CFS).
    27. Bandi, Federico M. & Russell, Jeffrey R. & Yang, Chen, 2008. "Realized volatility forecasting and option pricing," Journal of Econometrics, Elsevier, vol. 147(1), pages 34-46, November.
    28. Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013. "The leverage effect puzzle: Disentangling sources of bias at high frequency," Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
    29. Shin S. Ikeda, 2013. "A Note on the Mixingale Limit Theorem by McLeish (1977)," GRIPS Discussion Papers 13-11, National Graduate Institute for Policy Studies.
    30. Selma Chaker, 2013. "Volatility and Liquidity Costs," Staff Working Papers 13-29, Bank of Canada.
    31. Charles S. Bos & Paweł Janus & Siem Jan Koopman, 2012. "Spot Variance Path Estimation and Its Application to High-Frequency Jump Testing," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 10(2), pages 354-389, 2012 06.
    32. Rasmus Tangsgaard Varneskov, 2011. "Generalized Flat-Top Realized Kernel Estimation of Ex-Post Variation of Asset Prices Contaminated by Noise," CREATES Research Papers 2011-31, Department of Economics and Business Economics, Aarhus University.
    33. Kim Christensen & Roel Oomen & Roberto Renò, 2016. "The Drift Burst Hypothesis," CREATES Research Papers 2016-28, Department of Economics and Business Economics, Aarhus University.
    34. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    35. Sujin Park & Oliver Linton, 2012. "Estimating the Quadratic Covariation Matrix for an Asynchronously Observed Continuous Time Signal Masked by Additive Noise," FMG Discussion Papers dp703, Financial Markets Group.
    36. Ikeda, Shin S., 2016. "A bias-corrected estimator of the covariation matrix of multiple security prices when both microstructure effects and sampling durations are persistent and endogenous," Journal of Econometrics, Elsevier, vol. 193(1), pages 203-214.
    37. Kim, Donggyu & Wang, Yazhen & Zou, Jian, 2016. "Asymptotic theory for large volatility matrix estimation based on high-frequency financial data," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3527-3577.
    38. Markus Bibinger & Markus Reiss & Nikolaus Hautsch & Peter Malec, 2014. "Estimating the Spot Covariation of Asset Prices – Statistical Theory and Empirical Evidence," SFB 649 Discussion Papers SFB649DP2014-055, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    39. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.
    40. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
    41. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Featured entries

This author is featured on the following reading lists, publication compilations or Wikipedia entries:
  1. Latvian Economists

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 6 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-MST: Market Microstructure (4) 2015-10-04 2015-12-20 2015-12-28 2016-02-04
  2. NEP-ECM: Econometrics (3) 2015-10-04 2015-12-28 2015-12-28
  3. NEP-ETS: Econometric Time Series (1) 2016-02-04
  4. NEP-ORE: Operations Research (1) 2016-02-04

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Ilze Kalnina should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.