IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.08654.html
   My bibliography  Save this paper

An Efficient Multi-scale Leverage Effect Estimator under Dependent Microstructure Noise

Author

Listed:
  • Ziyang Xiong
  • Zhao Chen
  • Christina Dan Wang

Abstract

Estimating the leverage effect from high-frequency data is vital but challenged by complex, dependent microstructure noise, often exhibiting non-Gaussian higher-order moments. This paper introduces a novel multi-scale framework for efficient and robust leverage effect estimation under such flexible noise structures. We develop two new estimators, the Subsampling-and-Averaging Leverage Effect (SALE) and the Multi-Scale Leverage Effect (MSLE), which adapt subsampling and multi-scale approaches holistically using a unique shifted window technique. This design simplifies the multi-scale estimation procedure and enhances noise robustness without requiring the pre-averaging approach. We establish central limit theorems and stable convergence, with MSLE achieving convergence rates of an optimal $n^{-1/4}$ and a near-optimal $n^{-1/9}$ for the noise-free and noisy settings, respectively. A cornerstone of our framework's efficiency is a specifically designed MSLE weighting strategy that leverages covariance structures across scales. This significantly reduces asymptotic variance and, critically, yields substantially smaller finite-sample errors than existing methods under both noise-free and realistic noisy settings. Extensive simulations and empirical analyses confirm the superior efficiency, robustness, and practical advantages of our approach.

Suggested Citation

  • Ziyang Xiong & Zhao Chen & Christina Dan Wang, 2025. "An Efficient Multi-scale Leverage Effect Estimator under Dependent Microstructure Noise," Papers 2505.08654, arXiv.org.
  • Handle: RePEc:arx:papers:2505.08654
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.08654
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    2. Rui Da & Dacheng Xiu, 2021. "When Moving‐Average Models Meet High‐Frequency Data: Uniform Inference on Volatility," Econometrica, Econometric Society, vol. 89(6), pages 2787-2825, November.
    3. Kalnina, Ilze & Linton, Oliver, 2008. "Estimating quadratic variation consistently in the presence of endogenous and diurnal measurement error," Journal of Econometrics, Elsevier, vol. 147(1), pages 47-59, November.
    4. Bandi, Federico M. & Renò, Roberto, 2012. "Time-varying leverage effects," Journal of Econometrics, Elsevier, vol. 169(1), pages 94-113.
    5. Li, Yingying & Xie, Shangyu & Zheng, Xinghua, 2016. "Efficient estimation of integrated volatility incorporating trading information," Journal of Econometrics, Elsevier, vol. 195(1), pages 33-50.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    8. Mark Podolskij & Mathias Vetter, 2010. "Understanding limit theorems for semimartingales: a short survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(3), pages 329-351, August.
    9. Pierre Bajgrowicz & Olivier Scaillet & Adrien Treccani, 2016. "Jumps in High-Frequency Data: Spurious Detections, Dynamics, and News," Management Science, INFORMS, vol. 62(8), pages 2198-2217, August.
    10. Aït-Sahalia, Yacine & Xiu, Dacheng, 2019. "A Hausman test for the presence of market microstructure noise in high frequency data," Journal of Econometrics, Elsevier, vol. 211(1), pages 176-205.
    11. Per A. Mykland & Lan Zhang, 2009. "Inference for Continuous Semimartingales Observed at High Frequency," Econometrica, Econometric Society, vol. 77(5), pages 1403-1445, September.
    12. Mark Podolskij & Mathias Vetter, 2010. "Understanding limit theorems for semimartingales: a short survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 329-351.
    13. Li, Z. Merrick & Laeven, Roger J.A. & Vellekoop, Michel H., 2020. "Dependent microstructure noise and integrated volatility estimation from high-frequency data," Journal of Econometrics, Elsevier, vol. 215(2), pages 536-558.
    14. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Wenhao & Hu, Jie & Wang, Jiandong, 2024. "Nonparametric estimation for high-frequency data incorporating trading information," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Andersen, Torben G. & Archakov, Ilya & Cebiroglu, Gökhan & Hautsch, Nikolaus, 2022. "Local mispricing and microstructural noise: A parametric perspective," Journal of Econometrics, Elsevier, vol. 230(2), pages 510-534.
    3. Andersen, Torben G. & Cebiroglu, Gökhan & Hautsch, Nikolaus, 2017. "Volatility, information feedback and market microstructure noise: A tale of two regimes," CFS Working Paper Series 569, Center for Financial Studies (CFS).
    4. Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016. "A nonparametric test of a strong leverage hypothesis," Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
    5. Bibinger, Markus & Neely, Christopher & Winkelmann, Lars, 2019. "Estimation of the discontinuous leverage effect: Evidence from the NASDAQ order book," Journal of Econometrics, Elsevier, vol. 209(2), pages 158-184.
    6. Clinet, Simon & Potiron, Yoann, 2018. "Efficient asymptotic variance reduction when estimating volatility in high frequency data," Journal of Econometrics, Elsevier, vol. 206(1), pages 103-142.
    7. Kolokolov, Aleksey & Livieri, Giulia & Pirino, Davide, 2018. "Statistical inferences for price staleness," SAFE Working Paper Series 236, Leibniz Institute for Financial Research SAFE.
    8. Yuta Koike, 2017. "Time endogeneity and an optimal weight function in pre-averaging covariance estimation," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 15-56, April.
    9. Bibinger, Markus, 2011. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," SFB 649 Discussion Papers 2011-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Li, Yifan & Nolte, Ingmar & Vasios, Michalis & Voev, Valeri & Xu, Qi, 2022. "Weighted Least Squares Realized Covariation Estimation," Journal of Banking & Finance, Elsevier, vol. 137(C).
    11. Curato, Imma Valentina & Sanfelici, Simona, 2022. "Stochastic leverage effect in high-frequency data: a Fourier based analysis," Econometrics and Statistics, Elsevier, vol. 23(C), pages 53-82.
    12. Kolokolov, Aleksey & Livieri, Giulia & Pirino, Davide, 2020. "Statistical inferences for price staleness," Journal of Econometrics, Elsevier, vol. 218(1), pages 32-81.
    13. Christensen, Kim & Oomen, Roel & Renò, Roberto, 2022. "The drift burst hypothesis," Journal of Econometrics, Elsevier, vol. 227(2), pages 461-497.
    14. Giacomo Toscano & Maria Cristina Recchioni, 2022. "Bias-optimal vol-of-vol estimation: the role of window overlapping," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 137-185, June.
    15. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.
    16. Giacomo Toscano & Maria Cristina Recchioni, 2020. "Bias optimal vol-of-vol estimation: the role of window overlapping," Papers 2004.04013, arXiv.org, revised Jul 2021.
    17. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    18. Prosper Dovonon & Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2019. "Bootstrapping High-Frequency Jump Tests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 793-803, April.
    19. Imma Valentina Curato, 2012. "Asymptotics for the Fourier estimators of the volatility of volatility and the leverage," Working Papers - Mathematical Economics 2012-11, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    20. Mykland, Per A. & Zhang, Lan, 2021. "The Observed Asymptotic Variance: Hard edges, and a regression approach," Journal of Econometrics, Elsevier, vol. 222(1), pages 411-428.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.08654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.