IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v7y2019i1p13-d213518.html
   My bibliography  Save this article

Fixed and Long Time Span Jump Tests: New Monte Carlo and Empirical Evidence

Author

Listed:
  • Mingmian Cheng

    () (Department of Finance, Lingnan (University) College, Sun Yat-sen University, 135 Xingang West Road, Guangzhou 510275, China)

  • Norman R. Swanson

    () (Department of Economics, School of Arts and Sciences, Rutgers University, 75 Hamilton Street, New Brunswick, NJ 08901, USA)

Abstract

Numerous tests designed to detect realized jumps over a fixed time span have been proposed and extensively studied in the financial econometrics literature. These tests differ from “long time span tests” that detect jumps by examining the magnitude of the jump intensity parameter in the data generating process, and which are consistent. In this paper, long span jump tests are compared and contrasted with a variety of fixed span jump tests in a series of Monte Carlo experiments. It is found that both the long time span tests of Corradi et al. (2018) and the fixed span tests of Aït-Sahalia and Jacod (2009) exhibit reasonably good finite sample properties, for time spans both short and long. Various other tests suffer from finite sample distortions, both under sequential testing and under long time spans. The latter finding is new, and confirms the “pitfall” discussed in Huang and Tauchen (2005), of using asymptotic approximations associated with finite time span tests in order to study long time spans of data. An empirical analysis is carried out to investigate the implications of these findings, and “time-span robust” tests indicate that the prevalence of jumps is not as universal as might be expected.

Suggested Citation

  • Mingmian Cheng & Norman R. Swanson, 2019. "Fixed and Long Time Span Jump Tests: New Monte Carlo and Empirical Evidence," Econometrics, MDPI, Open Access Journal, vol. 7(1), pages 1-32, March.
  • Handle: RePEc:gam:jecnmx:v:7:y:2019:i:1:p:13-:d:213518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/7/1/13/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/7/1/13/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ana-Maria Dumitru & Giovanni Urga, 2011. "Identifying Jumps in Financial Assets: A Comparison Between Nonparametric Jump Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 242-255, October.
    2. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    3. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    4. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    5. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
    6. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    7. repec:taf:jnlasa:v:112:y:2017:i:517:p:384-396 is not listed on IDEAS
    8. Ilze Kalnina & Dacheng Xiu, 2017. "Nonparametric Estimation of the Leverage Effect: A Trade-Off Between Robustness and Efficiency," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 384-396, January.
    9. repec:hal:journl:peer-00741630 is not listed on IDEAS
    10. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    11. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 456-499.
    12. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    13. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    14. Aït-Sahalia, Yacine & Jacod, Jean & Li, Jia, 2012. "Testing for jumps in noisy high frequency data," Journal of Econometrics, Elsevier, vol. 168(2), pages 207-222.
    15. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
    16. repec:taf:jnlbes:v:30:y:2012:i:2:p:242-255 is not listed on IDEAS
    17. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    18. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    19. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    20. repec:taf:jnlasa:v:112:y:2017:i:520:p:1744-1758 is not listed on IDEAS
    21. repec:eee:econom:v:204:y:2018:i:2:p:248-267 is not listed on IDEAS
    22. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    jump test; jump intensity; sequential testing bias; fixed time span; long time span; high-frequency data;

    JEL classification:

    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C - Mathematical and Quantitative Methods
    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:7:y:2019:i:1:p:13-:d:213518. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.