IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v65y2023i4d10.1007_s00181-023-02391-0.html
   My bibliography  Save this article

Dissecting Brazilian agriculture business cycles in high-dimensional and time-irregular span contexts

Author

Listed:
  • André Nunes Maranhão

    (São Paulo School of Economics, FGV
    Credit Directory, Bank of Brazil, BB)

  • Nicole Rennó Castro

    (University of São Paulo (USP))

Abstract

Business cycle analysis faces the challenge of high-dimensional databases with a time-irregular span. This study addresses these issues to estimate the Brazilian agricultural business cycle by proposing the use of an entropic test of relative information and the estimation of a generalized dynamic factor model in the context of a time-irregular span. In addition, we assess the co-movements between the estimated cycle and a wide range of weather, macroeconomic, and sectoral variables. The main results are: (i) the sharpest crises of the agricultural cycle are associated more with weather events than with Brazil’s economic crises, reinforcing that agriculture has a stabilizing role in the aggregated cycles; (ii) among all the variables analyzed, those related to weather (minimum and maximum temperature and precipitation) present the greatest commonalities with the agricultural cycle and are leading indicators; (iii) minimum temperatures and precipitation in states are essentially pro-cyclical, while maximum temperatures are pro-cyclical in typically colder states and counter-cyclical in warmer states; (iv) following the weather variables, credit variables had the highest average commonalities, with phases of expansion in the agricultural cycle leading to contractions in the indicators of arrears and defaults and in the interest rate of rural credit, with some time lag; (v) the behavior of the Brazilian economy and global demand for imports are also antecedent and pro-cyclical, but with relatively smaller commonalities; and (vi) expansions of the agricultural cycle lead to contractions in the unemployment rate of the economy. The contribution of this study is twofold: (1) its methodological innovation and (2) its application to the Brazilian agricultural business cycle, both of which are unprecedented.

Suggested Citation

  • André Nunes Maranhão & Nicole Rennó Castro, 2023. "Dissecting Brazilian agriculture business cycles in high-dimensional and time-irregular span contexts," Empirical Economics, Springer, vol. 65(4), pages 1543-1578, October.
  • Handle: RePEc:spr:empeco:v:65:y:2023:i:4:d:10.1007_s00181-023-02391-0
    DOI: 10.1007/s00181-023-02391-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-023-02391-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-023-02391-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Stock, James H. & Watson, Mark W., 2014. "Estimating turning points using large data sets," Journal of Econometrics, Elsevier, vol. 178(P2), pages 368-381.
    3. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    4. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2004. "The generalized dynamic factor model consistency and rates," Journal of Econometrics, Elsevier, vol. 119(2), pages 231-255, April.
    5. Alexandre Belloni & Victor Chernozhukov, 2011. "High Dimensional Sparse Econometric Models: An Introduction," Papers 1106.5242, arXiv.org, revised Sep 2011.
    6. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    7. Estrella, Arturo & Mishkin, Frederic S., 1997. "The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank," European Economic Review, Elsevier, vol. 41(7), pages 1375-1401, July.
    8. Rachel Male, 2011. "Developing Country Business Cycles: Characterizing the Cycle," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(0), pages 20-39, May.
    9. Minella, André, 2003. "Monetary Policy and Inflation in Brazil (1975-2000): A VAR Estimation," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 57(3), July.
    10. Chauvet, Marcelle, 2002. "The Brazilian Business and Growth Cycles," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 56(1), January.
    11. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    12. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages 62-85, May.
    13. Neumeyer, Pablo A. & Perri, Fabrizio, 2005. "Business cycles in emerging economies: the role of interest rates," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 345-380, March.
    14. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    15. Alvin H. Hansen, 1932. "The Business Cycle and Its Relation to Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 14(1), pages 59-67.
    16. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    17. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    18. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    19. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    20. Louzis, Dimitrios P. & Vouldis, Angelos T. & Metaxas, Vasilios L., 2012. "Macroeconomic and bank-specific determinants of non-performing loans in Greece: A comparative study of mortgage, business and consumer loan portfolios," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1012-1027.
    21. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference for High-Dimensional Sparse Econometric Models," Papers 1201.0220, arXiv.org.
    22. Millner, Antony & Dietz, Simon, 2015. "Adaptation to climate change and economic growth in developing countries," Environment and Development Economics, Cambridge University Press, vol. 20(3), pages 380-406, June.
    23. Watson, Mark W. & Stock, James H., 2014. "Estimating turning points using large data sets," Scholarly Articles 33192198, Harvard University Department of Economics.
    24. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
    25. Buckle, Robert A. & Kim, Kunhong & Kirkham, Heather & McLellan, Nathan & Sharma, Jarad, 2007. "A structural VAR business cycle model for a volatile small open economy," Economic Modelling, Elsevier, vol. 24(6), pages 990-1017, November.
    26. Song Song & Peter J. Bickel, 2011. "Large Vector Auto Regressions," Papers 1106.3915, arXiv.org.
    27. Millner, Antony & Dietz, Simon, 2015. "Adaptation to climate change and economic growth in developing countries," LSE Research Online Documents on Economics 57863, London School of Economics and Political Science, LSE Library.
    28. Florence Contré & Ian Goldin, 1990. "Agriculture and the Economic Cycle: An Economic and Econometric Analysis with Special Reference to Brazil," OECD Development Centre Working Papers 15, OECD Publishing.
    29. Darrel Cohen, 2001. "Linear data transformations used in economics," Finance and Economics Discussion Series 2001-59, Board of Governors of the Federal Reserve System (U.S.).
    30. Lucas, Robert E, Jr, 1975. "An Equilibrium Model of the Business Cycle," Journal of Political Economy, University of Chicago Press, vol. 83(6), pages 1113-1144, December.
    31. Jan Jacobs & Pieter Otter, 2008. "Determining the Number of Factors and Lag Order in Dynamic Factor Models: A Minimum Entropy Approach," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 385-397.
    32. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    33. Fabio Kanczuk, 2004. "Real Interest Rates and Brazilian Business Cycles," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 7(2), pages 436-455, April.
    34. Long, John B, Jr & Plosser, Charles I, 1983. "Real Business Cycles," Journal of Political Economy, University of Chicago Press, vol. 91(1), pages 39-69, February.
    35. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    36. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    37. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
    38. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    39. Döhrn, Roland & an de Meulen, Philipp, 2015. "Weather, the Forgotten Factor in Business Cycle Analyses," Ruhr Economic Papers 539, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    40. Barro, Robert J., 1976. "Rational expectations and the role of monetary policy," Journal of Monetary Economics, Elsevier, vol. 2(1), pages 1-32, January.
    41. William D. Nordhaus, 1993. "Reflections on the Economics of Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 7(4), pages 11-25, Fall.
    42. Belloumi, Mounir, 2014. "Investigating the impact of climate change on agricultural production in eastern and southern African countries," AGRODEP working papers 3, International Food Policy Research Institute (IFPRI).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    2. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    3. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    4. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
    5. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    6. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    7. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
    8. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    9. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    10. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    11. Arias, Maria A. & Gascon, Charles S. & Rapach, David E., 2016. "Metro business cycles," Journal of Urban Economics, Elsevier, vol. 94(C), pages 90-108.
    12. Fiorentini, Gabriele & Galesi, Alessandro & Sentana, Enrique, 2018. "A spectral EM algorithm for dynamic factor models," Journal of Econometrics, Elsevier, vol. 205(1), pages 249-279.
    13. Bork, Lasse, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," Finance Research Group Working Papers F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    14. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    15. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    16. Lippi, Marco & Deistler, Manfred & Anderson, Brian, 2023. "High-Dimensional Dynamic Factor Models: A Selective Survey and Lines of Future Research," Econometrics and Statistics, Elsevier, vol. 26(C), pages 3-16.
    17. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    18. Grassi, Stefano & Proietti, Tommaso & Frale, Cecilia & Marcellino, Massimiliano & Mazzi, Gianluigi, 2015. "EuroMInd-C: A disaggregate monthly indicator of economic activity for the Euro area and member countries," International Journal of Forecasting, Elsevier, vol. 31(3), pages 712-738.
    19. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    20. Juho Koistinen & Bernd Funovits, 2022. "Estimation of Impulse-Response Functions with Dynamic Factor Models: A New Parametrization," Papers 2202.00310, arXiv.org, revised Feb 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:65:y:2023:i:4:d:10.1007_s00181-023-02391-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.