IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i17p10794-d901658.html
   My bibliography  Save this article

The Impact of Environmental Regulation on Agricultural Productivity: From the Perspective of Digital Transformation

Author

Listed:
  • Zhiqiang Zhou

    (School of Business, Hunan University of Science and Technology, Yuhu District, Xiangtan 411201, China
    School of Metallurgy and Environment, Central South University, Yuelu District, Changsha 410083, China)

  • Wenyan Liu

    (School of Business, Hunan University of Science and Technology, Yuhu District, Xiangtan 411201, China)

  • Huilin Wang

    (School of Business, Hunan University of Science and Technology, Yuhu District, Xiangtan 411201, China
    International College, National Institute of Development Administration, 118 Moo3, Sereethai Road, Klong-Chan, Bangkapi, Bangkok 10240, Thailand)

  • Jingyu Yang

    (Department of Medical Bioinformatics, University of Göttingen, 37077 Göttingen, Germany)

Abstract

China’s goal of becoming a strong agricultural country cannot be achieved without the modernization and digital transformation of the agricultural sector. Presently, China’s agriculture has ushered in the era of digital economy transformation. The digital transformation of agriculture has played a huge role in improving agricultural productivity, promoting sustainable development of China’s agricultural economy, and achieving sustainable development goals. The deep integration of digital economy and agricultural economy has become an important issue of The Times. This study uses a two-way fixed-effects model and an instrumental variable method to examine the impact of environmental regulation on agricultural total factor productivity. Using the method of mechanism analysis, the conduction path of improving agricultural productivity under the means of environmental regulation is discussed. Therefore, the visualization analysis results based on the panel data of Chinese agricultural enterprises from 2011 to 2019 show that the distribution of digital transformation and productivity level of enterprises is uneven and tends to be stable in space. The empirical analysis results show that there is a direct and significant positive relationship between voluntary environmental regulation and agricultural total factor productivity. The results of mechanism analysis show that, under the means of environmental regulation, digital transformation plays an indirect role in improving agricultural productivity. On the basis of enriching and deepening the theoretical extension of the “Porter Hypothesis”, this study subtly incorporates environmental regulation, digital transformation, and agricultural productivity into a unified framework, expanding existing research.

Suggested Citation

  • Zhiqiang Zhou & Wenyan Liu & Huilin Wang & Jingyu Yang, 2022. "The Impact of Environmental Regulation on Agricultural Productivity: From the Perspective of Digital Transformation," IJERPH, MDPI, vol. 19(17), pages 1-19, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10794-:d:901658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/17/10794/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/17/10794/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Lanoie & Michel Patry & Richard Lajeunesse, 2008. "Environmental regulation and productivity: testing the porter hypothesis," Journal of Productivity Analysis, Springer, vol. 30(2), pages 121-128, October.
    2. Stefan Ambec & Mark A. Cohen & Stewart Elgie & Paul Lanoie, 2013. "The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 2-22, January.
    3. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    4. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    5. David Annandale & Angus Morrison‐Saunders & George Bouma, 2004. "The impact of voluntary environmental protection instruments on company environmental performance," Business Strategy and the Environment, Wiley Blackwell, vol. 13(1), pages 1-12, January.
    6. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    7. Pan, Wenrong & Xie, Tao & Wang, Zhuwang & Ma, Lisha, 2022. "Digital economy: An innovation driver for total factor productivity," Journal of Business Research, Elsevier, vol. 139(C), pages 303-311.
    8. Verena Tiefenbeck, 2017. "Bring behaviour into the digital transformation," Nature Energy, Nature, vol. 2(6), pages 1-3, June.
    9. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    10. Luc Anselin & Attila Varga & Zoltan Acs, 2008. "Local Geographic Spillovers Between University Research and High Technology Innovations," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 9, pages 95-121, Edward Elgar Publishing.
    11. Sa Xu & Cunyi Yang & Zhehao Huang & Pierre Failler, 2022. "Interaction between Digital Economy and Environmental Pollution: New Evidence from a Spatial Perspective," IJERPH, MDPI, vol. 19(9), pages 1-23, April.
    12. repec:clg:wpaper:2008-02 is not listed on IDEAS
    13. Guoyou Qi & Saixing Zeng & Xiaodong Li & Chiming Tam, 2012. "Role of Internalization Process in Defining the Relationship between ISO 14001 Certification and Corporate Environmental Performance," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 19(3), pages 129-140, May.
    14. Karen Palmer & Wallace E. Oates & Paul R. Portney & Karen Palmer & Wallace E. Oates & Paul R. Portney, 2004. "Tightening Environmental Standards: The Benefit-Cost or the No-Cost Paradigm?," Chapters, in: Environmental Policy and Fiscal Federalism, chapter 3, pages 53-66, Edward Elgar Publishing.
    15. Tiankui Li & Yi Liu & Sijie Lin & Yangze Liu & Yunfeng Xie, 2019. "Soil Pollution Management in China: A Brief Introduction," Sustainability, MDPI, vol. 11(3), pages 1-15, January.
    16. Ying Chen & Suran Li & Long Cheng, 2020. "Evaluation of Cultivated Land Use Efficiency with Environmental Constraints in the Dongting Lake Eco-Economic Zone of Hunan Province, China," Land, MDPI, vol. 9(11), pages 1-15, November.
    17. Brahima Coulibaly & Shixiang Li, 2020. "Impact of Agricultural Land Loss on Rural Livelihoods in Peri-Urban Areas: Empirical Evidence from Sebougou, Mali," Land, MDPI, vol. 9(12), pages 1-20, November.
    18. Uwe Deichmann & Aparajita Goyal & Deepak Mishra, 2016. "Will digital technologies transform agriculture in developing countries?," Agricultural Economics, International Association of Agricultural Economists, vol. 47(S1), pages 21-33, November.
    19. Bu, Maoliang & Qiao, Zhenzi & Liu, Beibei, 2020. "Voluntary environmental regulation and firm innovation in China," Economic Modelling, Elsevier, vol. 89(C), pages 10-18.
    20. Henry G. Bennett, 1951. "Land and Independence: American's Experience," Land Economics, University of Wisconsin Press, vol. 27(4), pages 379-384.
    21. Arik Levinson & M. Scott Taylor, 2008. "Unmasking The Pollution Haven Effect," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(1), pages 223-254, February.
    22. Larisa Hrustek, 2020. "Sustainability Driven by Agriculture through Digital Transformation," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    23. Stucki, Tobias & Woerter, Martin & Arvanitis, Spyros & Peneder, Michael & Rammer, Christian, 2018. "How different policy instruments affect green product innovation: A differentiated perspective," Energy Policy, Elsevier, vol. 114(C), pages 245-261.
    24. Okushima, Shinichiro & Tamura, Makoto, 2010. "What causes the change in energy demand in the economy?: The role of technological change," Energy Economics, Elsevier, vol. 32(Supplemen), pages 41-46, September.
    25. Regina Birner & Thomas Daum & Carl Pray, 2021. "Who drives the digital revolution in agriculture? A review of supply‐side trends, players and challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1260-1285, December.
    26. Juan Alcácer & Wilbur Chung, 2007. "Location Strategies and Knowledge Spillovers," Management Science, INFORMS, vol. 53(5), pages 760-776, May.
    27. Yu, Lili & Zhao, Duanyang & Xue, Zihao & Gao, Yang, 2020. "Research on the use of digital finance and the adoption of green control techniques by family farms in China," Technology in Society, Elsevier, vol. 62(C).
    28. Ram Swaroop Meena & Sandeep Kumar & Rahul Datta & Rattan Lal & Vinod Vijayakumar & Martin Brtnicky & Mahaveer Prasad Sharma & Gulab Singh Yadav & Manoj Kumar Jhariya & Chetan Kumar Jangir & Shamina Im, 2020. "Impact of Agrochemicals on Soil Microbiota and Management: A Review," Land, MDPI, vol. 9(2), pages 1-21, January.
    29. Jelena Živanović Miljković & Vesna Popović & Aleksandra Gajić, 2022. "Land Take Processes and Challenges for Urban Agriculture: A Spatial Analysis for Novi Sad, Serbia," Land, MDPI, vol. 11(6), pages 1-18, May.
    30. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    31. Chiou, Tzu-Yun & Chan, Hing Kai & Lettice, Fiona & Chung, Sai Ho, 2011. "The influence of greening the suppliers and green innovation on environmental performance and competitive advantage in Taiwan," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 822-836.
    32. Tianyu Qin & Lijun Wang & Yanxin Zhou & Liyue Guo & Gaoming Jiang & Lei Zhang, 2022. "Digital Technology-and-Services-Driven Sustainable Transformation of Agriculture: Cases of China and the EU," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
    33. ElMassah, Suzanna & Mohieldin, Mahmoud, 2020. "Digital transformation and localizing the Sustainable Development Goals (SDGs)," Ecological Economics, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guixiang Cao & Jinghuai She & Chengzi Cao & Qiuxiang Cao, 2024. "Environmental Protection Tax and Green Innovation: The Mediating Role of Digitalization and ESG," Sustainability, MDPI, vol. 16(2), pages 1-26, January.
    2. Ye Tian & Qin Liu & Yiting Ye & Zhaofang Zhang & Ribesh Khanal, 2023. "How the Rural Digital Economy Drives Rural Industrial Revitalization—Case Study of China’s 30 Provinces," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    3. Lin Zhu & Brychko Alina, 2023. "Bibliometric Analysis of Research Hotspots and Trends in the Transformation and Development of Agricultural Enterprises," Management Theory and Studies for Rural Business and Infrastructure Development, Sciendo, vol. 45(4), pages 438-452, December.
    4. Penglong Li & Xuan Ye, 2024. "Research on the promotion effect and mechanisms of digital empowerment of food enterprises," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 70(2), pages 60-72.
    5. Jan Polcyn & Alexandru Stratan & Viorica Lopotenco, 2023. "Sustainable Agriculture’s Contribution to Quality of Life," Sustainability, MDPI, vol. 15(23), pages 1-29, November.
    6. Jianxu Liu & Xiaoqing Li & Shutong Liu & Sanzidur Rahman & Songsak Sriboonchitta, 2022. "Addressing Rural–Urban Income Gap in China through Farmers’ Education and Agricultural Productivity Growth via Mediation and Interaction Effects," Agriculture, MDPI, vol. 12(11), pages 1-23, November.
    7. Jiajia Meng & Baoyu Zhao & Yuxiao Song & Xiaomei Lin, 2024. "Research on the Spatial Dynamic Evolution of Digital Agriculture—Evidence from China," Sustainability, MDPI, vol. 16(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Youxing & Xu, Qi & Zhao, Yanping, 2021. "Short-run pain, long-run gain: Desulfurization investment and productivity," Energy Economics, Elsevier, vol. 102(C).
    2. Nusrate Aziz & Belayet Hossain & Laura Lamb, 2022. "Does green policy pay dividends?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 147-172, April.
    3. Martínez-Zarzoso, Inmaculada & Bengochea-Morancho, Aurelia & Morales-Lage, Rafael, 2019. "Does environmental policy stringency foster innovation and productivity in OECD countries?," Energy Policy, Elsevier, vol. 134(C).
    4. Zhang, Dan & Zheng, Mingbo & Feng, Gen-Fu & Chang, Chun-Ping, 2022. "Does an environmental policy bring to green innovation in renewable energy?," Renewable Energy, Elsevier, vol. 195(C), pages 1113-1124.
    5. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    6. Yanhong Feng & Shuanglian Chen & Pierre Failler, 2020. "Productivity Effect Evaluation on Market-Type Environmental Regulation: A Case Study of SO 2 Emission Trading Pilot in China," IJERPH, MDPI, vol. 17(21), pages 1-27, October.
    7. Albrizio, Silvia & Kozluk, Tomasz & Zipperer, Vera, 2017. "Environmental policies and productivity growth: Evidence across industries and firms," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 209-226.
    8. Peng, Jiaying & Xie, Rui & Ma, Chunbo & Fu, Yang, 2021. "Market-based environmental regulation and total factor productivity: Evidence from Chinese enterprises," Economic Modelling, Elsevier, vol. 95(C), pages 394-407.
    9. Antoine Dechezleprêtre & Misato Sato, 2017. "The Impacts of Environmental Regulations on Competitiveness," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 183-206.
    10. Erik Hille & Patrick Möbius, 2019. "Environmental Policy, Innovation, and Productivity Growth: Controlling the Effects of Regulation and Endogeneity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1315-1355, August.
    11. Bellelli, Francesco S. & Xu, Ankai, 2022. "How do environmental policies affect green innovation and trade? Evidence from the WTO Environmental Database (EDB)," WTO Staff Working Papers ERSD-2022-3, World Trade Organization (WTO), Economic Research and Statistics Division.
    12. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    13. Yanli Ji & Jie Xue & Kaiyang Zhong, 2022. "Does Environmental Regulation Promote Industrial Green Technology Progress? Empirical Evidence from China with a Heterogeneity Analysis," IJERPH, MDPI, vol. 19(1), pages 1-23, January.
    14. Yu, Wantao & Ramanathan, Ramakrishnan & Nath, Prithwiraj, 2017. "Environmental pressures and performance: An analysis of the roles of environmental innovation strategy and marketing capability," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 160-169.
    15. Pedro Naso & Yi Huang Author Name: Tim Swanson, 2017. "The Porter Hypothesis Goes to China: Spatial Development, Environmental Regulation and Productivity," CIES Research Paper series 53-2017, Centre for International Environmental Studies, The Graduate Institute.
    16. Stanley Kam Sing Wong, 2013. "Environmental Requirements, Knowledge Sharing and Green Innovation: Empirical Evidence from the Electronics Industry in China," Business Strategy and the Environment, Wiley Blackwell, vol. 22(5), pages 321-338, July.
    17. Xie, Rong-hui & Yuan, Yi-jun & Huang, Jing-jing, 2017. "Different Types of Environmental Regulations and Heterogeneous Influence on “Green” Productivity: Evidence from China," Ecological Economics, Elsevier, vol. 132(C), pages 104-112.
    18. Yanli Li & Jiayuan Li & Luyao Gan, 2022. "A Meta-Analysis of the Relationship between Environmental Regulations and Competitiveness and Conditions for Its Realization," IJERPH, MDPI, vol. 19(13), pages 1-12, June.
    19. Die Hu & Yuandi Wang & Yu Li, 2017. "How Does Open Innovation Modify the Relationship between Environmental Regulations and Productivity?," Business Strategy and the Environment, Wiley Blackwell, vol. 26(8), pages 1132-1143, December.
    20. Caroline Orset, 2014. "Innovation and the precautionary principle," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 23(8), pages 780-801, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10794-:d:901658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.