IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i2p297-d753217.html
   My bibliography  Save this article

Digital Technology-and-Services-Driven Sustainable Transformation of Agriculture: Cases of China and the EU

Author

Listed:
  • Tianyu Qin

    (State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Lijun Wang

    (School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China)

  • Yanxin Zhou

    (School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China)

  • Liyue Guo

    (State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China)

  • Gaoming Jiang

    (State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Lei Zhang

    (School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China)

Abstract

China’s sustainable development goals and carbon neutrality targets cannot be achieved without revolutionary transitions of the agricultural sector. The rapid development of digital technologies is believed to play a huge role in this revolution. The ongoing prevention and control of COVID-19 has greatly boosted the penetration of digital technology services in all areas of society, and sustainable transformation driven by digital technologies and services is rapidly becoming an area of innovation and research. Studies have shown that the rapid advancement of digitalization is also accompanied by a series of new governance challenges and problems: (1) unclear strategic orientation and inadequate policy and regulatory responses; (2) various stakeholders have not formed a sustainable community of interest; (3) information explosion is accompanied by information fragmentation and digital divide between countries and populations within countries. Meanwhile, current research has focused more on the role of digital services in urban governance and industrial development and lacks systematic research on its role in sustainable agricultural and rural development. To address the realities faced by different stakeholders in the process of digital transformation of agriculture, this paper aims to propose an inclusive analytical framework based on the meta-governance theory to identify and analyze the demand, supply, actor networks, and incentives in the digital technology-and-services-driven sustainable agricultural transformation, starting from the goals and connotations of sustainable agricultural and rural transformation and the interactions among different stakeholders in governing information flows. This analytical framework is further applied to analyze the cases of China and the EU. Although China and the EU represent different development phases and policy contexts, the framework is valid for capturing the characteristics of information flows and actor networks along the flows. It is concluded that a common information platform based on the stakeholder network would benefit all stakeholders, help reach common framing of issues, and maintain a dynamic exchange of information. Depending on the country context, different types of stakeholders may play different roles in creating, supervising, and maintaining such platforms. Digital infrastructures/products as hardware and farmers digital capacity as ‘software’ are the two wings for digital sustainable transformation. Innovative incentives from different countries may inspire each other. In any case, farmers’ actual farming behavior changes should be an important criterion for evaluating the effects and effectiveness of digital transition governance.

Suggested Citation

  • Tianyu Qin & Lijun Wang & Yanxin Zhou & Liyue Guo & Gaoming Jiang & Lei Zhang, 2022. "Digital Technology-and-Services-Driven Sustainable Transformation of Agriculture: Cases of China and the EU," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:297-:d:753217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/2/297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/2/297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juliette G. C. Martin & Anna Scolobig & JoAnne Linnerooth-Bayer & Wei Liu & Jörg Balsiger, 2021. "Catalyzing Innovation: Governance Enablers of Nature-Based Solutions," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    2. Nelson, Rebecca, 2020. "Viewpoint: International agriculture’s needed shift from energy intensification to agroecological intensification," Food Policy, Elsevier, vol. 91(C).
    3. Wolfert, Sjaak & Ge, Lan & Verdouw, Cor & Bogaardt, Marc-Jeroen, 2017. "Big Data in Smart Farming – A review," Agricultural Systems, Elsevier, vol. 153(C), pages 69-80.
    4. Tikkanen, Jukka, 2018. "Participatory turn - and down-turn - in Finland's regional forest programme process," Forest Policy and Economics, Elsevier, vol. 89(C), pages 87-97.
    5. Sarkki, Simo & Rönkä, Anna Reetta, 2012. "Neoliberalisations in Finnish forestry," Forest Policy and Economics, Elsevier, vol. 15(C), pages 152-159.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ha, Le Thanh, 2023. "An investigation of digital integration's importance on smart and sustainable agriculture in the European region," Resources Policy, Elsevier, vol. 86(PA).
    2. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitalization of the agricultural sector: the impact of ICT on the development of enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    3. Pigford, Ashlee-Ann E. & Hickey, Gordon M. & Klerkx, Laurens, 2018. "Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions," Agricultural Systems, Elsevier, vol. 164(C), pages 116-121.
    4. repec:ags:areint:342110 is not listed on IDEAS
    5. Figueiredo, Paulo N., 2016. "Evolution of the short-fiber technological trajectory in Brazil's pulp and paper industry: The role of firm-level innovative capability-building and indigenous institutions," Forest Policy and Economics, Elsevier, vol. 64(C), pages 1-14.
    6. Panos Constantinides & Ola Henfridsson & Geoffrey G. Parker, 2018. "Introduction—Platforms and Infrastructures in the Digital Age," Information Systems Research, INFORMS, vol. 29(2), pages 381-400, June.
    7. Divya Suresh & Abhishek Choudhury & Yinjia Zhang & Zhiying Zhao & Rajib Shaw, 2024. "The Role of Data-Driven Agritech Startups—The Case of India and Japan," Sustainability, MDPI, vol. 16(11), pages 1-17, May.
    8. Alexander McBratney & Minhyung Park, 2025. "Agriculture over the Horizon: A Synthesis for the Mid-21st Century," Sustainability, MDPI, vol. 17(21), pages 1-20, October.
    9. Hidalgo, Francisco & Quiñones-Ruiz, Xiomara F. & Birkenberg, Athena & Daum, Thomas & Bosch, Christine & Hirsch, Patrick & Birner, Regina, 2023. "Digitalization, sustainability, and coffee. Opportunities and challenges for agricultural development," Agricultural Systems, Elsevier, vol. 208(C).
    10. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    11. Víctor M. Albornoz & Lia C. Araneda & Rodrigo Ortega, 2022. "Planning and scheduling of selective harvest with management zones delineation," Annals of Operations Research, Springer, vol. 316(2), pages 873-890, September.
    12. Jingmei Gao & Zahid Sarwar, 2024. "How do firms create business value and dynamic capabilities by leveraging big data analytics management capability?," Information Technology and Management, Springer, vol. 25(3), pages 283-304, September.
    13. Sarkki, Simo & Heikkinen, Hannu I. & Herva, Vesa-Pekka & Saarinen, Jarkko, 2018. "Myths on local use of natural resources and social equity of land use governance: Reindeer herding in Finland," Land Use Policy, Elsevier, vol. 77(C), pages 322-331.
    14. Shebanina, Olena & Burkovska, Anna & Petrenko, Vadym & Burkovska, Alla, 2023. "Economic planning at agricultural enterprises: Ukrainian experience of increasing the availability of data in the context of food security," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    15. Shen, Zhiyang & Wang, Songkai & Boussemart, Jean-Philippe & Hao, Yu, 2022. "Digital transition and green growth in Chinese agriculture," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    16. Salembier, Chloé & Segrestin, Blanche & Sinoir, Nicolas & Templier, Joseph & Weil, Benoît & Meynard, Jean-Marc, 2020. "Design of equipment for agroecology: Coupled innovation processes led by farmer-designers," Agricultural Systems, Elsevier, vol. 183(C).
    17. Pereira, Karine Vargas & Siluk, Julio Cezar Mairesse & Michelin, Cláudia de Freitas & Rigo, Paula Donaduzzi & Quiroga, Daniel Oscar & Manosso, Thayane Sviercoski, 2024. "Factors that impact on Brazilian rural producers’ decision-making: A systematic literature review," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 15(02), June.
    18. Sarkki, Simo & Karjalainen, Timo P., 2015. "Ecosystem service valuation in a governance debate: Practitioners' strategic argumentation on forestry in northern Finland," Ecosystem Services, Elsevier, vol. 16(C), pages 13-22.
    19. Norman Siebrecht, 2020. "Sustainable Agriculture and Its Implementation Gap—Overcoming Obstacles to Implementation," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    20. Ashfield, Austen & Mullan, Conall & Jack, Claire, 2020. "Encouraging farmer participation in agricultural education and training: A Northern Ireland perspective," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 9, November.
    21. Gackstetter, David & von Bloh, Malte & Hannus, Veronika & Meyer, Sebastian T. & Weisser, Wolfgang & Luksch, Claudia & Asseng, Senthold, 2023. "Autonomous field management – An enabler of sustainable future in agriculture," Agricultural Systems, Elsevier, vol. 206(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:297-:d:753217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.