IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i12p8236-8263d43363.html
   My bibliography  Save this article

International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA

Author

Listed:
  • Juliana Subtil Lacerda

    (Institute for Environmental Science and Technology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain)

  • Jeroen C. J. M. Van den Bergh

    (Institute for Environmental Science and Technology, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
    Faculty of Economics and Business Administration, and the Institute for Environmental Studies, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
    Tinbergen Institute, Gustav Mahlerplein 117, Amsterdam 1082 MS, The Netherlands
    ICREA, Passeig Lluís Companys, 23, Barcelona 08010, Spain)

Abstract

The international diffusion of environmental innovations is getting increasing attention as an opportunity to improve competitiveness. Especially in the energy sector, countries use policy support to this end. A recent goal in this context is the formation of “lead markets”, which represents the idea that countries can build up first-mover advantages that will increase their competitiveness. Taking the lead in international diffusion of a particular innovation benefits a country’s industry through creating increasing returns of technological development and stimulating exports to expanding international markets. Interaction between national and international forces affecting renewable energy innovation and its diffusion has received fairly little attention so far. Here, we investigate the formation of lead markets for wind power technologies in China, Germany and the USA to see whether policy support of renewable energy innovation is capable of improving competitiveness. An extension of the current lead market framework is developed to include supply side factors and technology policy issues. The comparative analysis of lead market potential for wind power indicates a high level of internationalization of the industry with countries holding lead positions in specific parts the supply chain. Competitive advantages were built upon policy support but tended to shift among countries.

Suggested Citation

  • Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:12:p:8236-8263:d:43363
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/12/8236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/12/8236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Felix Groba & Jing Cao, 2015. "Chinese Renewable Energy Technology Exports: The Role of Policy, Innovation and Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(2), pages 243-283, February.
    2. Philippe Aghion & Jing Cai & Mathias Dewatripont & Luosha Du & Ann Harrison & Patrick Legros, 2022. "Industrial Policy and Competition," World Scientific Book Chapters, in: Globalization, Firms, and Workers, chapter 15, pages 349-380, World Scientific Publishing Co. Pte. Ltd..
    3. Autant-Bernard, Corinne & Fadairo, Muriel & Massard, Nadine, 2013. "Knowledge diffusion and innovation policies within the European regions: Challenges based on recent empirical evidence," Research Policy, Elsevier, vol. 42(1), pages 196-210.
    4. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    5. Sam Fankhauser & Alex Bowen & Raphael Calel & Antoine Dechezlepr�tre & David Grover & James Rydge & Misato Sato, 2012. "Who will win the green race? In search of environmental competitiveness and innovation," GRI Working Papers 94, Grantham Research Institute on Climate Change and the Environment.
    6. Beise, Marian, 2004. "Lead markets: country-specific drivers of the global diffusion of innovations," Research Policy, Elsevier, vol. 33(6-7), pages 997-1018, September.
    7. Beise, Marian & Rennings, Klaus, 2005. "Lead markets and regulation: a framework for analyzing the international diffusion of environmental innovations," Ecological Economics, Elsevier, vol. 52(1), pages 5-17, January.
    8. Glachant, Matthieu & Dussaux, Damien & Meniere, Yann & Dechezlepretre, Antoine, 2013. "Greening global value chains : innovation and the international diffusion of technologies and knowledge," Policy Research Working Paper Series 6467, The World Bank.
    9. Ru, Peng & Zhi, Qiang & Zhang, Fang & Zhong, Xiaotian & Li, Jianqiang & Su, Jun, 2012. "Behind the development of technology: The transition of innovation modes in China’s wind turbine manufacturing industry," Energy Policy, Elsevier, vol. 43(C), pages 58-69.
    10. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    11. Grubler, Arnulf, 2012. "Energy transitions research: Insights and cautionary tales," Energy Policy, Elsevier, vol. 50(C), pages 8-16.
    12. Gosens, Jorrit & Lu, Yonglong, 2013. "From lagging to leading? Technological innovation systems in emerging economies and the case of Chinese wind power," Energy Policy, Elsevier, vol. 60(C), pages 234-250.
    13. Thomas Cleff & Klaus Rennings, 2011. "Theoretical and Empirical Evidence of Timing-to-Market and Lead Market Strategies for Successful Environmental Innovation," Discussion Papers dp11-01, Department of Economics, Simon Fraser University.
    14. Huang, Cui & Su, Jun & Zhao, Xiaoyuan & Sui, Jigang & Ru, Peng & Zhang, Hanwei & Wang, Xin, 2012. "Government funded renewable energy innovation in China," Energy Policy, Elsevier, vol. 51(C), pages 121-127.
    15. Jacob Funk Kirkegaard & Thilo Hanemann & Lutz Weischer, 2009. "It Should Be a Breeze: Harnessing the Potential of Open Trade and Investment Flows in the Wind Energy Industry," Working Paper Series WP09-14, Peterson Institute for International Economics.
    16. Bolinger, Mark & Wiser, Ryan, 2012. "Understanding wind turbine price trends in the U.S. over the past decade," Energy Policy, Elsevier, vol. 42(C), pages 628-641.
    17. Li, Jun & Wang, Xin, 2012. "Energy and climate policy in China's twelfth five-year plan: A paradigm shift," Energy Policy, Elsevier, vol. 41(C), pages 519-528.
    18. Chowdhury, Sanjeeda & Sumita, Ushio & Islam, Ashraful & Bedja, Idriss, 2014. "Importance of policy for energy system transformation: Diffusion of PV technology in Japan and Germany," Energy Policy, Elsevier, vol. 68(C), pages 285-293.
    19. Costantini, Valeria & Mazzanti, Massimiliano, 2012. "On the green and innovative side of trade competitiveness? The impact of environmental policies and innovation on EU exports," Research Policy, Elsevier, vol. 41(1), pages 132-153.
    20. Pearson, Peter J.G. & Foxon, Timothy J., 2012. "A low carbon industrial revolution? Insights and challenges from past technological and economic transformations," Energy Policy, Elsevier, vol. 50(C), pages 117-127.
    21. Klaus Rennings & Wilko Smidt, 2010. "A Lead Market Approach towards the Emergence and Diffusion of Coal-Fired Power Plant Technology," Economia politica, Società editrice il Mulino, issue 2, pages 303-328.
    22. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    23. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, September.
    24. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    25. J. Edler & L. Georghiou & K. Blind & E. Uyarra, 2012. "Evaluating the demand side: New challenges for evaluation," Research Evaluation, Oxford University Press, vol. 21(1), pages 33-47, February.
    26. Corsatea, Teodora Diana & Giaccaria, Sergio & Arántegui, Roberto Lacal, 2014. "The role of sources of finance on the development of wind technology," Renewable Energy, Elsevier, vol. 66(C), pages 140-149.
    27. Qiu, Yueming & Anadon, Laura D., 2012. "The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization," Energy Economics, Elsevier, vol. 34(3), pages 772-785.
    28. Giovanni Dosi & Keith Pavitt & Luc Soete, 1990. "The Economics of Technical Change and International Trade," LEM Book Series, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy, number dosietal-1990, November.
    29. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    30. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.
    31. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    32. Schmidt-Ehmcke, Jens & Zloczysti, Petra & Braun, Frauke G, 2010. "Innovative Activity in Wind and Solar Technology: Empirical Evidence on Knowledge Spillovers Using Patent Data," CEPR Discussion Papers 7865, C.E.P.R. Discussion Papers.
    33. Giovanni Dosi & Keith Pavitt & Luc Soete, 1990. "Technology and trade: An overview of the literature," LEM Chapters Series, in: The Economics of Technical Change and International Trade, chapter 2, pages 15-39, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    34. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    35. del Río, Pablo & Calvo Silvosa, Anxo & Iglesias Gómez, Guillermo, 2011. "Policies and design elements for the repowering of wind farms: A qualitative analysis of different options," Energy Policy, Elsevier, vol. 39(4), pages 1897-1908, April.
    36. AfDB AfDB, . "Annual Report 2012," Annual Report, African Development Bank, number 461.
    37. Beise, Marian & Cleff, Thomas, 2004. "Assessing the lead market potential of countries for innovation projects," Journal of International Management, Elsevier, vol. 10(4), pages 453-477.
    38. Smith Stegen, Karen & Seel, Matthias, 2013. "The winds of change: How wind firms assess Germany's energy transition," Energy Policy, Elsevier, vol. 61(C), pages 1481-1489.
    39. Nill, Jan & Kemp, Ren, 2009. "Evolutionary approaches for sustainable innovation policies: From niche to paradigm?," Research Policy, Elsevier, vol. 38(4), pages 668-680, May.
    40. Smith, Adrian & Voß, Jan-Peter & Grin, John, 2010. "Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges," Research Policy, Elsevier, vol. 39(4), pages 435-448, May.
    41. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, September.
    42. Mowery, David C. & Nelson, Richard R. & Martin, Ben R., 2010. "Technology policy and global warming: Why new policy models are needed (or why putting new wine in old bottles won't work)," Research Policy, Elsevier, vol. 39(8), pages 1011-1023, October.
    43. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    44. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    45. Nick Johnstone & Ivan Haščič & Margarita Kalamova, 2010. "Environmental Policy Design Characteristics and Technological Innovation: Evidence from Patent Data," OECD Environment Working Papers 16, OECD Publishing.
    46. Ernst, Dieter & Kim, Linsu, 2002. "Global production networks, knowledge diffusion, and local capability formation," Research Policy, Elsevier, vol. 31(8-9), pages 1417-1429, December.
    47. Binz, Christian & Truffer, Bernhard & Coenen, Lars, 2014. "Why space matters in technological innovation systems—Mapping global knowledge dynamics of membrane bioreactor technology," Research Policy, Elsevier, vol. 43(1), pages 138-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    2. Halleck-Vega, Solmaria & Mandel, Antoine & Millock, Katrin, 2018. "Accelerating diffusion of climate-friendly technologies: A network perspective," Ecological Economics, Elsevier, vol. 152(C), pages 235-245.
    3. Zhihui Leng & Jing Shuai & Fubin Huang & Zihan Wang & Chuanmin Shuai, 2019. "Comparative advantages of China’s wind energy products: a Belt-and-Road perspective," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(3), pages 1459-1478, May.
    4. Avri Eitan, 2023. "The Impact of Renewable Energy Targets on Natural Gas Export Policy: Lessons from the Israeli Case," Resources, MDPI, vol. 12(2), pages 1-15, February.
    5. Haileyesus B. Endeshaw & Stephen Ekwaro-Osire & Fisseha M. Alemayehu & João Paulo Dias, 2017. "Evaluation of Fatigue Crack Propagation of Gears Considering Uncertainties in Loading and Material Properties," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    6. Martin Jänicke, 2015. "Horizontal and Vertical Reinforcement in Global Climate Governance," Energies, MDPI, vol. 8(6), pages 1-18, June.
    7. Thomas Poulsen & Charlotte Bay Hasager, 2016. "How Expensive Is Expensive Enough? Opportunities for Cost Reductions in Offshore Wind Energy Logistics," Energies, MDPI, vol. 9(6), pages 1-23, June.
    8. García-Granero, Eva M. & Piedra-Muñoz, Laura & Galdeano-Gómez, Emilio, 2018. "Eco-innovation measurement: A review of firm performance indicators," MPRA Paper 119905, University Library of Munich, Germany.
    9. Alexander Melnik & Kirill Ermolaev, 2020. "Strategy Context of Decision Making for Improved Energy Efficiency in Industrial Energy Systems," Energies, MDPI, vol. 13(7), pages 1-28, March.
    10. Shuai, Jing & Zhao, Yujia & Wang, Yilan & Cheng, Jinhua, 2022. "Renewable energy product competitiveness: Evidence from the United States, China and India," Energy, Elsevier, vol. 249(C).
    11. Miremadi, I. & Saboohi, Y. & Arasti, M., 2019. "The influence of public R&D and knowledge spillovers on the development of renewable energy sources: The case of the Nordic countries," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 450-463.
    12. Yu, Bolin & Fang, Debin & Xiao, Kun & Pan, Yuling, 2023. "Drivers of renewable energy penetration and its role in power sector's deep decarbonization towards carbon peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    13. María del Carmen Galera-Quiles & Laura Piedra-Muñoz & Emilio Galdeano-Gómez & Angel Carreño-Ortega, 2021. "A Review of Eco-Innovations and Exports Interrelationship, with Special Reference to International Agrifood Supply Chains," Sustainability, MDPI, vol. 13(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    2. Bento, Nuno & Fontes, Margarida, 2015. "The construction of a new technological innovation system in a follower country: Wind energy in Portugal," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 197-210.
    3. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    4. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    5. Marc Baudry & Clément Bonnet, 2016. "Demand pull isntruments and the development of wind power in Europe: A counter-factual analysis," Working Papers 1607, Chaire Economie du climat.
    6. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    7. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    8. Fagerberg, Jan, 2018. "Mobilizing innovation for sustainability transitions: A comment on transformative innovation policy," Research Policy, Elsevier, vol. 47(9), pages 1568-1576.
    9. Marc Baudry & Clément Bonnet, 2019. "Demand-Pull Instruments and the Development of Wind Power in Europe: A Counterfactual Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 385-429, June.
    10. Tilmann Rave & Ursula Triebswetter & Johann Wackerbauer, 2013. "Koordination von Innovations-, Energie- und Umweltpolitik," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 61, September.
    11. Miremadi, I. & Saboohi, Y. & Arasti, M., 2019. "The influence of public R&D and knowledge spillovers on the development of renewable energy sources: The case of the Nordic countries," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 450-463.
    12. Ghisetti, Claudia & Marzucchi, Alberto & Montresor, Sandro, 2015. "The open eco-innovation mode. An empirical investigation of eleven European countries," Research Policy, Elsevier, vol. 44(5), pages 1080-1093.
    13. Tang, Tian, 2018. "Explaining technological change in the US wind industry: Energy policies, technological learning, and collaboration," Energy Policy, Elsevier, vol. 120(C), pages 197-212.
    14. Garsous, Grégoire & Worack, Stephan, 2022. "Technological expertise as a driver of environmental technology diffusion through trade: Evidence from the wind turbine manufacturing industry," Energy Policy, Elsevier, vol. 162(C).
    15. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Polzin, Friedemann, 2017. "Mobilizing private finance for low-carbon innovation – A systematic review of barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 525-535.
    17. Adela Conchado & Pedro Linares, 2017. "A New ‘Cut’ on Technological Innovation Aiming for Sustainability in a Globalized World," SPRU Working Paper Series 2017-25, SPRU - Science Policy Research Unit, University of Sussex Business School.
    18. Francesco Nicolli & Francesco Vona & Lionel Nesta, 2012. "Determinants of Renewable Energy Innovation: Environmental Policies vs. Market Regulation," Working Papers 201204, University of Ferrara, Department of Economics.
    19. Bongsuk Sung & Myoung Shik Choi & Woo-Yong Song, 2019. "Exploring the Effects of Government Policies on Economic Performance: Evidence Using Panel Data for Korean Renewable Energy Technology Firms," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    20. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:12:p:8236-8263:d:43363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.