IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i6p437-d71543.html
   My bibliography  Save this article

How Expensive Is Expensive Enough? Opportunities for Cost Reductions in Offshore Wind Energy Logistics

Author

Listed:
  • Thomas Poulsen

    (Department of Mechanical and Manufacturing Engineering, Aalborg University, A. C. Meyers Vænge 15, DK-2450 Copenhagen SV, Denmark)

  • Charlotte Bay Hasager

    (Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde, Denmark)

Abstract

This paper reveals that logistics may conservatively amount to 18% of the levelized cost of energy for offshore wind farms. This is the key finding from an extensive case study carried out within the organization of the world’s leading offshore wind farm developer and operator. The case study aimed to, and produced, a number of possible opportunities for offshore wind cost reductions through logistics innovation; however, within the case study company, no company-wide logistics organization existed to focus horizontally on reducing logistics costs in general. Logistics was not well defined within the case study company, and a logistics strategy did not exist. With full life-cycle costs of offshore wind farms still high enough to present a political challenge within the European Union in terms of legislation to ensure offshore wind diffusion beyond 2020, our research presents logistics as a next frontier for offshore wind constituencies. This important area of the supply chain is ripe to academically and professionally cultivate and harvest in terms of offshore wind energy cost reductions. Our paper suggests that a focused organizational approach for logistics both horizontally and vertically within the company organizations could be the way forward, coupled with a long-term legislative environment to enable the necessary investments in logistics assets and transport equipment.

Suggested Citation

  • Thomas Poulsen & Charlotte Bay Hasager, 2016. "How Expensive Is Expensive Enough? Opportunities for Cost Reductions in Offshore Wind Energy Logistics," Energies, MDPI, vol. 9(6), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:437-:d:71543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/6/437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/6/437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmood Shafiee & Fateme Dinmohammadi, 2014. "An FMEA-Based Risk Assessment Approach for Wind Turbine Systems: A Comparative Study of Onshore and Offshore," Energies, MDPI, vol. 7(2), pages 1-24, February.
    2. Heptonstall, Philip & Gross, Robert & Greenacre, Philip & Cockerill, Tim, 2012. "The cost of offshore wind: Understanding the past and projecting the future," Energy Policy, Elsevier, vol. 41(C), pages 815-821.
    3. Flyvbjerg,Bent & Bruzelius,Nils & Rothengatter,Werner, 2003. "Megaprojects and Risk," Cambridge Books, Cambridge University Press, number 9780521009461, October.
    4. Shafiee, Mahmood, 2015. "Maintenance logistics organization for offshore wind energy: Current progress and future perspectives," Renewable Energy, Elsevier, vol. 77(C), pages 182-193.
    5. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
    6. Gross, Robert & Blyth, William & Heptonstall, Philip, 2010. "Risks, revenues and investment in electricity generation: Why policy needs to look beyond costs," Energy Economics, Elsevier, vol. 32(4), pages 796-804, July.
    7. Maria Martinez Luengo & Athanasios Kolios, 2015. "Failure Mode Identification and End of Life Scenarios of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 8(8), pages 1-16, August.
    8. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    9. Zifa Liu & Wenhua Zhang & Changhong Zhao & Jiahai Yuan, 2015. "The Economics of Wind Power in China and Policy Implications," Energies, MDPI, vol. 8(2), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Haces-Fernandez & Hua Li & David Ramirez, 2018. "Assessment of the Potential of Energy Extracted from Waves and Wind to Supply Offshore Oil Platforms Operating in the Gulf of Mexico," Energies, MDPI, vol. 11(5), pages 1-25, April.
    2. Andrzej Jezierski & Cezary Mańkowski & Rafał Śpiewak, 2021. "Energy Savings Analysis in Logistics of a Wind Farm Repowering Process: A Case Study," Energies, MDPI, vol. 14(17), pages 1-23, September.
    3. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    4. Poulsen, Thomas & Lema, Rasmus, 2017. "Is the supply chain ready for the green transformation? The case of offshore wind logistics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 758-771.
    5. Parkison, Sara B. & Kempton, Willett, 2022. "Marshaling ports required to meet US policy targets for offshore wind power," Energy Policy, Elsevier, vol. 163(C).
    6. Elsner, Paul, 2019. "Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 394-407.
    7. Thomas Poulsen & Charlotte Bay Hasager & Christian Munk Jensen, 2017. "The Role of Logistics in Practical Levelized Cost of Energy Reduction Implementation and Government Sponsored Cost Reduction Studies: Day and Night in Offshore Wind Operations and Maintenance Logistic," Energies, MDPI, vol. 10(4), pages 1-28, April.
    8. Thomas Poulsen & Charlotte Bay Hasager, 2017. "The (R)evolution of China: Offshore Wind Diffusion," Energies, MDPI, vol. 10(12), pages 1-32, December.
    9. deCastro, M. & Salvador, S. & Gómez-Gesteira, M. & Costoya, X. & Carvalho, D. & Sanz-Larruga, F.J. & Gimeno, L., 2019. "Europe, China and the United States: Three different approaches to the development of offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 55-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Poulsen & Charlotte Bay Hasager & Christian Munk Jensen, 2017. "The Role of Logistics in Practical Levelized Cost of Energy Reduction Implementation and Government Sponsored Cost Reduction Studies: Day and Night in Offshore Wind Operations and Maintenance Logistic," Energies, MDPI, vol. 10(4), pages 1-28, April.
    2. Poulsen, Thomas & Lema, Rasmus, 2017. "Is the supply chain ready for the green transformation? The case of offshore wind logistics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 758-771.
    3. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    4. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    5. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    6. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    7. Rubert, T. & Zorzi, G. & Fusiek, G. & Niewczas, P. & McMillan, D. & McAlorum, J. & Perry, M., 2019. "Wind turbine lifetime extension decision-making based on structural health monitoring," Renewable Energy, Elsevier, vol. 143(C), pages 611-621.
    8. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    9. Marc Baudry & Clément Bonnet, 2016. "Demand pull isntruments and the development of wind power in Europe: A counter-factual analysis," Working Papers 1607, Chaire Economie du climat.
    10. Kitzing, Lena, 2014. "Risk implications of renewable support instruments: Comparative analysis of feed-in tariffs and premiums using a mean–variance approach," Energy, Elsevier, vol. 64(C), pages 495-505.
    11. de Bona, Jéssica Ceolin & Ferreira, Joao Carlos Espindola & Ordoñez Duran, Julian Fernando, 2021. "Analysis of scenarios for repowering wind farms in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Marc Baudry & Clément Bonnet, 2019. "Demand-Pull Instruments and the Development of Wind Power in Europe: A Counterfactual Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 385-429, June.
    13. Salo, Olli & Syri, Sanna, 2014. "What economic support is needed for Arctic offshore wind power?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 343-352.
    14. Sithole, H. & Cockerill, T.T. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Porter, R.T.J. & Pourkashanian, M., 2016. "Developing an optimal electricity generation mix for the UK 2050 future," Energy, Elsevier, vol. 100(C), pages 363-373.
    15. Maienza, C. & Avossa, A.M. & Ricciardelli, F. & Coiro, D. & Troise, G. & Georgakis, C.T., 2020. "A life cycle cost model for floating offshore wind farms," Applied Energy, Elsevier, vol. 266(C).
    16. Parkison, Sara B. & Kempton, Willett, 2022. "Marshaling ports required to meet US policy targets for offshore wind power," Energy Policy, Elsevier, vol. 163(C).
    17. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. uit het Broek, Michiel A.J. & Veldman, Jasper & Fazi, Stefano & Greijdanus, Roy, 2019. "Evaluating resource sharing for offshore wind farm maintenance: The case of jack-up vessels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 619-632.
    19. Harris, Grant & Heptonstall, Phil & Gross, Robert & Handley, David, 2013. "Cost estimates for nuclear power in the UK," Energy Policy, Elsevier, vol. 62(C), pages 431-442.
    20. Hung-Ta Wen & Jau-Huai Lu & Mai-Xuan Phuc, 2021. "Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression," Energies, MDPI, vol. 14(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:437-:d:71543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.