IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v104y2019icp394-407.html
   My bibliography  Save this article

Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource

Author

Listed:
  • Elsner, Paul

Abstract

Offshore wind energy is rapidly becoming a technology that developing countries could consider because project costs have recently fallen substantially. Further reductions are expected as the industry matures. For most African coastal states, specific information about their offshore wind potential is not available. This study aims to address this shortcoming by evaluating the technical offshore wind potential of the entire continent using spatially explicit models and long-term satellite data. Two different scenarios were developed to reflect different levels of technological maturity in the wind industry: The shallow-water, near-coast scenario 1 represented the conservative assumption that technology will not improve beyond what is available already now. The deep-water, full-exclusive economic zone (EEZ) scenario 2 assumes the operational availability of floating platforms that would allow it to access wind resources at much deeper water depths across the entire EEZ. It is emphasized that the model results are subject to a number of uncertainties and therefore should be treated as first order estimates only. Both scenarios indicate very good technical offshore wind energy potential for one third of the African coastal states, with Mozambique, South Africa, Somalia, Madagascar and Morocco exhibiting particularly good resources. More than 90% of the offshore wind resources are concentrated in coastal zones associated to three African Power Pools. These are the Southern African Power Pool (SAPP), the Eastern African Power Pool (EAPP), and the Comité Maghrébin de l′Electricité (COMELEC). A joint and integrated development within these power pools could offer a promising approach to utilising offshore wind energy in Africa.

Suggested Citation

  • Elsner, Paul, 2019. "Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 394-407.
  • Handle: RePEc:eee:rensus:v:104:y:2019:i:c:p:394-407
    DOI: 10.1016/j.rser.2019.01.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119300449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.01.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nadia S. Ouedraogo, 2017. "Modeling sustainable long-term electricity supply–demand in Africa," WIDER Working Paper Series 023, World Institute for Development Economic Research (UNU-WIDER).
    2. Charlotte Bay Hasager, 2014. "Offshore winds mapped from satellite remote sensing," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(6), pages 594-603, November.
    3. Sheridan, Blaise & Baker, Scott D. & Pearre, Nathaniel S. & Firestone, Jeremy & Kempton, Willett, 2012. "Calculating the offshore wind power resource: Robust assessment methods applied to the U.S. Atlantic Coast," Renewable Energy, Elsevier, vol. 43(C), pages 224-233.
    4. Martin, Rebecca & Lazakis, Iraklis & Barbouchi, Sami & Johanning, Lars, 2016. "Sensitivity analysis of offshore wind farm operation and maintenance cost and availability," Renewable Energy, Elsevier, vol. 85(C), pages 1226-1236.
    5. Ouedraogo, Nadia S., 2017. "Modeling sustainable long-term electricity supply-demand in Africa," Applied Energy, Elsevier, vol. 190(C), pages 1047-1067.
    6. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
    7. Oh, Ki-Yong & Nam, Woochul & Ryu, Moo Sung & Kim, Ji-Young & Epureanu, Bogdan I., 2018. "A review of foundations of offshore wind energy convertors: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 16-36.
    8. Thomas Poulsen & Charlotte Bay Hasager, 2016. "How Expensive Is Expensive Enough? Opportunities for Cost Reductions in Offshore Wind Energy Logistics," Energies, MDPI, vol. 9(6), pages 1-23, June.
    9. Thomas Poulsen & Charlotte Bay Hasager, 2017. "The (R)evolution of China: Offshore Wind Diffusion," Energies, MDPI, vol. 10(12), pages 1-32, December.
    10. Yue, Cheng-Dar & Yang, Min-How, 2009. "Exploring the potential of wind energy for a coastal state," Energy Policy, Elsevier, vol. 37(10), pages 3925-3940, October.
    11. Rodrigues, S. & Restrepo, C. & Kontos, E. & Teixeira Pinto, R. & Bauer, P., 2015. "Trends of offshore wind projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1114-1135.
    12. Lacal-Arántegui, Roberto & Yusta, José M. & Domínguez-Navarro, José Antonio, 2018. "Offshore wind installation: Analysing the evidence behind improvements in installation time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 133-145.
    13. Dvorak, Michael J. & Archer, Cristina L. & Jacobson, Mark Z., 2010. "California offshore wind energy potential," Renewable Energy, Elsevier, vol. 35(6), pages 1244-1254.
    14. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    15. Cavazzi, S. & Dutton, A.G., 2016. "An Offshore Wind Energy Geographic Information System (OWE-GIS) for assessment of the UK's offshore wind energy potential," Renewable Energy, Elsevier, vol. 87(P1), pages 212-228.
    16. Soukissian, Takvor H. & Papadopoulos, Anastasios, 2015. "Effects of different wind data sources in offshore wind power assessment," Renewable Energy, Elsevier, vol. 77(C), pages 101-114.
    17. Gadad, Sanjeev & Deka, Paresh Chandra, 2016. "Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale," Applied Energy, Elsevier, vol. 176(C), pages 157-170.
    18. Nadia S. Ouedraogo, 2017. "Modeling sustainable long-term electricity supply-demand in Africa," WIDER Working Paper Series wp-2017-23, World Institute for Development Economic Research (UNU-WIDER).
    19. Yamaguchi, Atsushi & Ishihara, Takeshi, 2014. "Assessment of offshore wind energy potential using mesoscale model and geographic information system," Renewable Energy, Elsevier, vol. 69(C), pages 506-515.
    20. Anton Eberhard & Vivien Foster & Cecilia Briceño-Garmendia & Fatimata Ouedraogo & Daniel Camos & Maria Shkaratan, 2008. "Underpowered : The State of the Power Sector in Sub-Saharan Africa," World Bank Publications - Reports 7833, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gunnell, Yanni & Mietton, Michel & Touré, Amadou Abdourhamane & Fujiki, Kenji, 2023. "Potential for wind farming in West Africa from an analysis of daily peak wind speeds and a review of low-level jet dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Pustina, L. & Lugni, C. & Bernardini, G. & Serafini, J. & Gennaretti, M., 2020. "Control of power generated by a floating offshore wind turbine perturbed by sea waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Diego Fernando Bernal-Camacho & Jassiel V. H. Fontes & Edgar Mendoza, 2022. "A Technical Assessment of Offshore Wind Energy in Mexico: A Case Study in Tehuantepec Gulf," Energies, MDPI, vol. 15(12), pages 1-28, June.
    4. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    5. Kubiat Umoh & Mark Lemon, 2020. "Drivers for and Barriers to the Take up of Floating Offshore Wind Technology: A Comparison of Scotland and South Africa," Energies, MDPI, vol. 13(21), pages 1-21, October.
    6. Zhang, Zeyu & Liang, Yushi & Xue, Xinyue & Li, Yan & Zhang, Mulan & Li, Yiran & Ji, Xiaodong, 2024. "China's future wind energy considering air density during climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Gourvenec, Susan & Sturt, Fraser & Reid, Emily & Trigos, Federico, 2022. "Global assessment of historical, current and forecast ocean energy infrastructure: Implications for marine space planning, sustainable design and end-of-engineered-life management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Nezhad, M. Majidi & Neshat, M. & Heydari, A. & Razmjoo, A. & Piras, G. & Garcia, D. Astiaso, 2021. "A new methodology for offshore wind speed assessment integrating Sentinel-1, ERA-Interim and in-situ measurement," Renewable Energy, Elsevier, vol. 172(C), pages 1301-1313.
    9. Rogeau, Antoine & Vieubled, Julien & de Coatpont, Matthieu & Affonso Nobrega, Pedro & Erbs, Guillaume & Girard, Robin, 2023. "Techno-economic evaluation and resource assessment of hydrogen production through offshore wind farms: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    10. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    11. Cristian Mattar & Felipe Cabello-Españon & Nicolas G. Alonso-de-Linaje, 2021. "Towards a Future Scenario for Offshore Wind Energy in Chile: Breaking the Paradigm," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    12. Li, Chen & Mogollón, José M. & Tukker, Arnold & Dong, Jianning & von Terzi, Dominic & Zhang, Chunbo & Steubing, Bernhard, 2022. "Future material requirements for global sustainable offshore wind energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    13. Ayman Al-Quraan & Bashar Al-Mhairat & Ahmad M. A. Malkawi & Ashraf Radaideh & Hussein M. K. Al-Masri, 2023. "Optimal Prediction of Wind Energy Resources Based on WOA—A Case Study in Jordan," Sustainability, MDPI, vol. 15(5), pages 1-23, February.
    14. Elizaveta Gavrikova & Yegor Burda & Vladimir Gavrikov & Ruslan Sharafutdinov & Irina Volkova & Marina Rubleva & Daria Polosukhina, 2019. "Clean Energy Sources: Insights from Russia," Resources, MDPI, vol. 8(2), pages 1-25, May.
    15. Carreno-Madinabeitia, Sheila & Ibarra-Berastegi, Gabriel & Sáenz, Jon & Ulazia, Alain, 2021. "Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010)," Energy, Elsevier, vol. 226(C).
    16. Tiam Kapen, Pascalin & Jeutho Gouajio, Marinette & Yemélé, David, 2020. "Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon," Renewable Energy, Elsevier, vol. 159(C), pages 1188-1198.
    17. Boudia, Sidi Mohammed & Santos, João Andrade, 2019. "Assessment of large-scale wind resource features in Algeria," Energy, Elsevier, vol. 189(C).
    18. Peters, Jared L. & Remmers, Tiny & Wheeler, Andrew J. & Murphy, Jimmy & Cummins, Valerie, 2020. "A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    19. Xu, Wenxuan & Liu, Yongxue & Wu, Wei & Dong, Yanzhu & Lu, Wanyun & Liu, Yongchao & Zhao, Bingxue & Li, Huiting & Yang, Renfei, 2020. "Proliferation of offshore wind farms in the North Sea and surrounding waters revealed by satellite image time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Abdelaziz, Sara & Sparrow, Sarah N. & Hua, Weiqi & Wallom, David C.H., 2024. "Assessing long-term future climate change impacts on extreme low wind events for offshore wind turbines in the UK exclusive economic zone," Applied Energy, Elsevier, vol. 354(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peters, Jared L. & Remmers, Tiny & Wheeler, Andrew J. & Murphy, Jimmy & Cummins, Valerie, 2020. "A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Elsner, Paul & Suarez, Suzette, 2019. "Renewable energy from the high seas: Geo-spatial modelling of resource potential and legal implications for developing offshore wind projects beyond the national jurisdiction of coastal States," Energy Policy, Elsevier, vol. 128(C), pages 919-929.
    3. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
    4. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Tuy, Soklin & Lee, Han Soo & Chreng, Karodine, 2022. "Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Paul Bertheau & Ayobami Solomon Oyewo & Catherina Cader & Christian Breyer & Philipp Blechinger, 2017. "Visualizing National Electrification Scenarios for Sub-Saharan African Countries," Energies, MDPI, vol. 10(11), pages 1-20, November.
    7. Gil-García, Isabel C. & Ramos-Escudero, Adela & García-Cascales, M.S. & Dagher, Habib & Molina-García, A., 2022. "Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case," Renewable Energy, Elsevier, vol. 183(C), pages 130-147.
    8. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. deCastro, M. & Salvador, S. & Gómez-Gesteira, M. & Costoya, X. & Carvalho, D. & Sanz-Larruga, F.J. & Gimeno, L., 2019. "Europe, China and the United States: Three different approaches to the development of offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 55-70.
    10. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    11. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    12. Trotter, Philipp A., 2022. "The slow transition to solar, wind and other non-hydro renewables in Africa – Responding to and building on a critique by Kincer, Moss and Thurber (2021)," World Development Perspectives, Elsevier, vol. 25(C).
    13. Mina Masoomi & Mostafa Panahi & Reza Samadi, 2022. "Demand side management for electricity in Iran: cost and emission analysis using LEAP modeling framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5667-5693, April.
    14. Virtanen, E.A. & Lappalainen, J. & Nurmi, M. & Viitasalo, M. & Tikanmäki, M. & Heinonen, J. & Atlaskin, E. & Kallasvuo, M. & Tikkanen, H. & Moilanen, A., 2022. "Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    16. Nyiko Worship Hlongwane & Olebogeng David Daw, 2023. "Renewable Electricity Consumption and Economic Growth: A Comparative Study of South Africa and Zimbabwe," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 197-206, May.
    17. Oyewo, Ayobami Solomon & Aghahosseini, Arman & Ram, Manish & Breyer, Christian, 2020. "Transition towards decarbonised power systems and its socio-economic impacts in West Africa," Renewable Energy, Elsevier, vol. 154(C), pages 1092-1112.
    18. Prasad, Ravita D. & Raturi, Atul, 2019. "Low carbon alternatives and their implications for Fiji's electricity sector," Utilities Policy, Elsevier, vol. 56(C), pages 1-19.
    19. C, O. Mauricio Hernandez & Shadman, Milad & Amiri, Mojtaba Maali & Silva, Corbiniano & Estefen, Segen F. & La Rovere, Emilio, 2021. "Environmental impacts of offshore wind installation, operation and maintenance, and decommissioning activities: A case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Ramchandra Bhandari & Surendra Pandit, 2018. "Electricity as a Cooking Means in Nepal—A Modelling Tool Approach," Sustainability, MDPI, vol. 10(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:104:y:2019:i:c:p:394-407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.