IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i2p251-d1042331.html
   My bibliography  Save this article

Can Market-Oriented Reform of Agricultural Subsidies Promote the Growth of Agricultural Green Total Factor Productivity? Empirical Evidence from Maize in China

Author

Listed:
  • Feng Ye

    (College of Economics and Management, Huazhong Agricultural University, Wuhan 430070, China)

  • Zhongna Yang

    (Department of Economics and Management, Tarim University, Alar 843300, China)

  • Mark Yu

    (Division of Agribusiness and Agricultural Economics, Department of Agricultural and Consumer Sciences, Tarleton State University, P.O. Box T-0040, Stephenville, TX 76402, USA)

  • Susan Watson

    (New College, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA)

  • Ashley Lovell

    (Division of Agribusiness and Agricultural Economics, Department of Agricultural and Consumer Sciences, Tarleton State University, P.O. Box T-0040, Stephenville, TX 76402, USA)

Abstract

Green agriculture is the future of agricultural development. However, there has been little attention paid to the relationship between market-oriented reform of agricultural subsidies and green agricultural development. Based on the quasi-natural experiment of China’s maize purchasing and storage policy reform (MPSR), this paper studied the impact of agricultural subsidy market-oriented reform on agricultural green development from the perspective of green total factor productivity using the difference-in-difference model. The results showed that the green total factor productivity (MGTFP) of maize in China from 2010 to 2020 presented an upward trend with an average annual growth rate of 0.70%, which mainly depended on the contribution of green technical progress in maize. MPSR could promote the improvement of MGTFP, but the result had a hysteresis effect. In addition, MPSR had a significant promoting effect on green technical change but had no significant impact on green technical efficiency. The policy implication of this paper is that developing countries should actively promote the market-oriented reform of agricultural subsidies to promote green agricultural development.

Suggested Citation

  • Feng Ye & Zhongna Yang & Mark Yu & Susan Watson & Ashley Lovell, 2023. "Can Market-Oriented Reform of Agricultural Subsidies Promote the Growth of Agricultural Green Total Factor Productivity? Empirical Evidence from Maize in China," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:251-:d:1042331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/2/251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/2/251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Xiqian & Lu, Yi & Wu, Mingqin & Yu, Linhui, 2016. "Does environmental regulation drive away inbound foreign direct investment? Evidence from a quasi-natural experiment in China," Journal of Development Economics, Elsevier, vol. 123(C), pages 73-85.
    2. Jacobson, Louis S & LaLonde, Robert J & Sullivan, Daniel G, 1993. "Earnings Losses of Displaced Workers," American Economic Review, American Economic Association, vol. 83(4), pages 685-709, September.
    3. Wanglin Ma & Hongyun Zheng, 2022. "Heterogeneous impacts of information technology adoption on pesticide and fertiliser expenditures: Evidence from wheat farmers in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 72-92, January.
    4. Louis S. Jacobson & Robert J. LaLonde & Daniel G. Sullivan, 1993. "Long-term earnings losses of high-seniority displaced workers," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 17(Nov), pages 2-20.
    5. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    6. Houjian Li & Xiaolei Zhou & Mengqian Tang & Lili Guo, 2022. "Impact of Population Aging and Renewable Energy Consumption on Agricultural Green Total Factor Productivity in Rural China: Evidence from Panel VAR Approach," Agriculture, MDPI, vol. 12(5), pages 1-19, May.
    7. Bai, Caiquan & Du, Kerui & Yu, Ying & Feng, Chen, 2019. "Understanding the trend of total factor carbon productivity in the world: Insights from convergence analysis," Energy Economics, Elsevier, vol. 81(C), pages 698-708.
    8. Yafei Wang & Li Xie & Yi Zhang & Chunyun Wang & Ke Yu, 2019. "Does FDI Promote or Inhibit the High-Quality Development of Agriculture in China? An Agricultural GTFP Perspective," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    9. Jinkai Li & Jueying Chen & Heguang Liu, 2021. "Sustainable Agricultural Total Factor Productivity and Its Spatial Relationship with Urbanization in China," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    10. Yang Yang & Heng Ma & Guosong Wu, 2022. "Agricultural Green Total Factor Productivity under the Distortion of the Factor Market in China," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    11. Raj Chetty & Adam Looney & Kory Kroft, 2009. "Salience and Taxation: Theory and Evidence," American Economic Review, American Economic Association, vol. 99(4), pages 1145-1177, September.
    12. Adnan, Nadia & Nordin, Shahrina Md & Ali, Murad, 2018. "A solution for the sunset industry: Adoption of Green Fertiliser Technology amongst Malaysian paddy farmers," Land Use Policy, Elsevier, vol. 79(C), pages 575-584.
    13. Yi, Fujin & Sun, Dingqiang & Zhou, Yingheng, 2015. "Grain subsidy, liquidity constraints and food security—Impact of the grain subsidy program on the grain-sown areas in China," Food Policy, Elsevier, vol. 50(C), pages 114-124.
    14. Tian, Xu & Yu, Xiaohua, 2012. "The Enigmas of TFP in China: A meta-analysis," China Economic Review, Elsevier, vol. 23(2), pages 396-414.
    15. Xu, Bin & Lin, Boqiang, 2017. "Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model," Energy Policy, Elsevier, vol. 104(C), pages 404-414.
    16. Bingfei Bao & Shengtian Jin & Lilian Li & Kaifeng Duan & Xiaomei Gong, 2021. "Analysis of Green Total Factor Productivity of Grain and Its Dynamic Distribution: Evidence from Poyang Lake Basin, China," Agriculture, MDPI, vol. 12(1), pages 1-16, December.
    17. Li Wang & Jinyang Tang & Mengqian Tang & Mengying Su & Lili Guo, 2022. "Scale of Operation, Financial Support, and Agricultural Green Total Factor Productivity: Evidence from China," IJERPH, MDPI, vol. 19(15), pages 1-18, July.
    18. Subal Kumbhakar & M. Denny & M. Fuss, 2000. "Estimation and decomposition of productivity change when production is not efficient: a paneldata approach," Econometric Reviews, Taylor & Francis Journals, vol. 19(4), pages 312-320.
    19. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    20. Xiaocang Xu & Xiuquan Huang & Jun Huang & Xin Gao & Linhong Chen, 2019. "Spatial-Temporal Characteristics of Agriculture Green Total Factor Productivity in China, 1998–2016: Based on More Sophisticated Calculations of Carbon Emissions," IJERPH, MDPI, vol. 16(20), pages 1-16, October.
    21. Jianxu Liu & Changrui Dong & Shutong Liu & Sanzidur Rahman & Songsak Sriboonchitta, 2020. "Sources of Total-Factor Productivity and Efficiency Changes in China’s Agriculture," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    22. Huang, Wei & Liu, Hong, 2023. "Early childhood exposure to health insurance and adolescent outcomes: Evidence from rural China," Journal of Development Economics, Elsevier, vol. 160(C).
    23. Jintao Ma & Qiuguang Hu & Weiteng Shen & Xinyi Wei, 2021. "Does the Low-Carbon City Pilot Policy Promote Green Technology Innovation? Based on Green Patent Data of Chinese A-Share Listed Companies," IJERPH, MDPI, vol. 18(7), pages 1-18, April.
    24. Lin, Boqiang & Wang, Xiaolei, 2014. "Exploring energy efficiency in China׳s iron and steel industry: A stochastic frontier approach," Energy Policy, Elsevier, vol. 72(C), pages 87-96.
    25. Ball, V. Eldon & Lovell, C.A. Knox & Luu, H. & Nehring, Richard F., 2004. "Incorporating Environmental Impacts in the Measurement of Agricultural Productivity Growth," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 29(3), pages 1-25, December.
    26. Tao, Xueping & Wang, Ping & Zhu, Bangzhu, 2016. "Provincial green economic efficiency of China: A non-separable input–output SBM approach," Applied Energy, Elsevier, vol. 171(C), pages 58-66.
    27. Zhuohui Yu & Shiping Mao & Qingning Lin, 2022. "Has China’s Carbon Emissions Trading Pilot Policy Improved Agricultural Green Total Factor Productivity?," Agriculture, MDPI, vol. 12(9), pages 1-21, September.
    28. Malin Song & Hui Li, 2020. "Total factor productivity and the factors of green industry in Shanxi Province, China," Growth and Change, Wiley Blackwell, vol. 51(1), pages 488-504, March.
    29. Jiangfeng Hu & Xiaofang Zhang & Tingting Wang, 2022. "Spatial Spillover Effects of Resource Misallocation on the Green Total Factor Productivity in Chinese Agriculture," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    30. Gale, Fred, 2013. "Growth and Evolution in China's Agricultural Support Policies," Economic Research Report 155385, United States Department of Agriculture, Economic Research Service.
    31. Baochen Yang & Chuanze Liu & Zehao Gou & Jiacheng Man & Yunpeng Su, 2018. "How Will Policies of China’s CO 2 ETS Affect its Carbon Price: Evidence from Chinese Pilot Regions," Sustainability, MDPI, vol. 10(3), pages 1-26, February.
    32. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    33. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    34. Xinru Han & Ping Xue & Ningning Zhang, 2021. "Impact of Grain Subsidy Reform on the Land Use of Smallholder Farms: Evidence from Huang-Huai-Hai Plain in China," Land, MDPI, vol. 10(9), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Shen & Xiaoyang Guo & Xiuwu Zhang, 2023. "Digital Financial Inclusion, Land Transfer, and Agricultural Green Total Factor Productivity," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    2. Wen Xiang & Jianzhong Gao, 2023. "From Agricultural Green Production to Farmers’ Happiness: A Case Study of Kiwi Growers in China," IJERPH, MDPI, vol. 20(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Ye & Lang Wang & Amar Razzaq & Ting Tong & Qing Zhang & Azhar Abbas, 2023. "Policy Impacts of High-Standard Farmland Construction on Agricultural Sustainability: Total Factor Productivity-Based Analysis," Land, MDPI, vol. 12(2), pages 1-13, January.
    2. Xuelan Li & Rui Guan, 2023. "How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China?," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    3. Liu, Duan & Yu, Nizhou & Wan, Hong, 2022. "Does water rights trading affect corporate investment? The role of resource allocation and risk mitigation channels," Economic Modelling, Elsevier, vol. 117(C).
    4. Yakun Wang & Jingli Jiang & Dongqing Wang & Xinshang You, 2022. "Can Mechanization Promote Green Agricultural Production? An Empirical Analysis of Maize Production in China," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    5. Meiling Wang & Silu Pang & Ikram Hmani & Ilham Hmani & Cunfang Li & Zhengxia He, 2021. "Towards sustainable development: How does technological innovation drive the increase in green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 217-227, January.
    6. Pan Rao & Xiaojin Liu & Shubin Zhu & Xiaolan Kang & Xinglei Zhao & Fangting Xie, 2022. "Does the Application of ICTs Improve the Efficiency of Agricultural Carbon Reduction? Evidence from Broadband Adoption in Rural China," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    7. Zhou, Di & Yin, Xiaoshuo & Xie, Dongchun, 2023. "Local governments’ environmental targets and green total factor productivity in Chinese cities," Economic Modelling, Elsevier, vol. 120(C).
    8. Zheng, Xuemei & Wu, Chengkuan & Nepal, Rabindra, 2022. "Did the administrative approval reform in China affect the productivity of energy firms? – A quasi-natural experimental approach," Energy Economics, Elsevier, vol. 105(C).
    9. Li, Mingquan & Wang, Qi, 2014. "International environmental efficiency differences and their determinants," Energy, Elsevier, vol. 78(C), pages 411-420.
    10. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    11. Tang, Chang & Xue, Yan & Wu, Haitao & Irfan, Muhammad & Hao, Yu, 2022. "How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China," Technology in Society, Elsevier, vol. 69(C).
    12. Chen, Yvonne Jie & Li, Pei & Lu, Yi, 2018. "Career concerns and multitasking local bureaucrats: Evidence of a target-based performance evaluation system in China," Journal of Development Economics, Elsevier, vol. 133(C), pages 84-101.
    13. Liu, Guanchun & Liu, Yuanyuan & Zhang, Chengsi & Zhu, Yueteng, 2021. "Social insurance law and corporate financing decisions in China," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 816-837.
    14. Chen, Zhe & Song, Pei & Wang, Baolu, 2021. "Carbon emissions trading scheme, energy efficiency and rebound effect – Evidence from China's provincial data," Energy Policy, Elsevier, vol. 157(C).
    15. Yi Chen & Zhongwen Xu & Xuehao Wang & Yining Yang, 2023. "How does green credit policy improve corporate social responsibility in China? An analysis based on carbon‐intensive listed firms," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 889-904, March.
    16. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    17. Guo, Shu & Zhang, ZhongXiang, 2023. "Green credit policy and total factor productivity: Evidence from Chinese listed companies," Energy Economics, Elsevier, vol. 128(C).
    18. Xiao Zhang & Di Wang, 2023. "Beyond the Ecological Boundary: A Quasi-Natural Experiment on the Impact of National Marine Parks on Eco-Efficiency in Coastal Cities," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    19. Huayong Niu & Zhishuo Zhang & Manting Luo, 2022. "Evaluation and Prediction of Low-Carbon Economic Efficiency in China, Japan and South Korea: Based on DEA and Machine Learning," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    20. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:251-:d:1042331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.