IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i20p3932-d276989.html
   My bibliography  Save this article

Spatial-Temporal Characteristics of Agriculture Green Total Factor Productivity in China, 1998–2016: Based on More Sophisticated Calculations of Carbon Emissions

Author

Listed:
  • Xiaocang Xu

    (Research Center for Economy of Upper Reaches of the Yangtse River/School of Economics, Chongqing Technology and Business University, Chongqing 400067, China)

  • Xiuquan Huang

    (Research Center for Economy of Upper Reaches of the Yangtse River/School of Economics, Chongqing Technology and Business University, Chongqing 400067, China)

  • Jun Huang

    (Background Operation Center of Credit Card, China Minsheng Bank (Chengdu), Chengdu 610100, China)

  • Xin Gao

    (Business School, Hohai University, Nanjing 211100, China)

  • Linhong Chen

    (School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China
    School of Public Administration, Sichuan University, Chengdu 610065, China)

Abstract

Environmental costs should be taken into account when measuring the achievements of China’s agricultural development, since the long-term extensive development of agriculture has caused huge environmental pollution. This study took agricultural carbon emissions as an undesired output to estimate the agricultural development efficiency in 31 provinces of China from 1998 to 2016, based on the green total factor productivity, as assessed by the slacks-based measure directional distance function and constructing the global Malmquist–Luenberger index. We measured agricultural carbon emissions in terms of five aspects: agricultural materials, rice planting, soil, livestock and poultry farming, and straw burning, and then compared the green total factor productivity index and the total factor productivity index. The study came to the following conclusions: (1) the green technology efficiency change was smaller than the technology efficiency change at first, but the gap between them is narrowing with time, such that the former is now larger than the latter; (2) the green technology efficiency was in a declining state and the green technology progress was increasing, promoting the green total factor productivity growth, from 1998 to 2016; and (3) China’s agricultural green total factor productivity increased by 4.2% annually in the east, 3.4% annually in the central region, and 2.5% annually in the west.

Suggested Citation

  • Xiaocang Xu & Xiuquan Huang & Jun Huang & Xin Gao & Linhong Chen, 2019. "Spatial-Temporal Characteristics of Agriculture Green Total Factor Productivity in China, 1998–2016: Based on More Sophisticated Calculations of Carbon Emissions," IJERPH, MDPI, vol. 16(20), pages 1-16, October.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:20:p:3932-:d:276989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/20/3932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/20/3932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    2. Tim J. Coelli & D. S. Prasada Rao, 2005. "Total factor productivity growth in agriculture: a Malmquist index analysis of 93 countries, 1980–2000," Agricultural Economics, International Association of Agricultural Economists, vol. 32(s1), pages 115-134, January.
    3. Yingying Zhou & Yaru Xu & Chuanzhe Liu & Zhuoqing Fang & Xinyue Fu & Mingzhao He, 2019. "The Threshold Effect of China’s Financial Development on Green Total Factor Productivity," Sustainability, MDPI, vol. 11(14), pages 1-23, July.
    4. Baldoni, Edoardo & Coderoni, Silvia & Esposti, Roberto, 2017. "The productivity and environment nexus with farm-level data. The Case of Carbon Footprint in Lombardy FADN farms," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 6(2), September.
    5. Wu, Shunxiang, et al, 2001. "Productivity Growth and Its Components in Chinese Agriculture after Reforms," Review of Development Economics, Wiley Blackwell, vol. 5(3), pages 375-391, October.
    6. Shunxiang Wu & David Walker & Stephen Devadoss & Yao‐chi Lu, 2001. "Productivity Growth and its Components in Chinese Agriculture after Reforms," Review of Development Economics, Wiley Blackwell, vol. 5(3), pages 375-391, October.
    7. Xiaocang Xu & Zhiming Xu & Linhong Chen & Chang Li, 2019. "How Does Industrial Waste Gas Emission Affect Health Care Expenditure in Different Regions of China: An Application of Bayesian Quantile Regression," IJERPH, MDPI, vol. 16(15), pages 1-12, August.
    8. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    9. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    10. Baldoni, Edoardo & Coderoni, Silvia & Esposti, Roberto, 2017. "The Productivity-environment Nexus At The Farm Level. The Case Of Carbon Footprint Of Lombardy FADN Farms," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 260895, European Association of Agricultural Economists.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Mao & Yonglin Li & Deyi Xu & Yaqi Wu & Jinhua Cheng, 2022. "Spatial-Temporal Evolution of Total Factor Productivity in Logistics Industry of the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    2. Wentao Hu & Xiaoxiao Li, 2023. "Financial Technology Development and Green Total Factor Productivity," Sustainability, MDPI, vol. 15(13), pages 1-28, June.
    3. Yang Liu & Yanlin Yang & Huihui Li & Kaiyang Zhong, 2022. "Digital Economy Development, Industrial Structure Upgrading and Green Total Factor Productivity: Empirical Evidence from China’s Cities," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    4. Meiling Wang & Silu Pang & Ikram Hmani & Ilham Hmani & Cunfang Li & Zhengxia He, 2021. "Towards sustainable development: How does technological innovation drive the increase in green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 217-227, January.
    5. Yongyi Cheng & Liheng Lu & Tianyuan Shao & Manhong Shen & Laiqun Jin, 2018. "Decomposition Analysis of Factors Affecting Changes in Industrial Wastewater Emission Intensity in China: Based on a SSBM-GMI Approach," IJERPH, MDPI, vol. 15(12), pages 1-23, December.
    6. Yongyi Cheng & Tianyuan Shao & Huilin Lai & Manhong Shen & Yi Li, 2019. "Total-Factor Eco-Efficiency and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-14, October.
    7. Chong Huang & Kedong Yin & Hongbo Guo & Benshuo Yang, 2022. "Regional Differences and Convergence of Inter-Provincial Green Total Factor Productivity in China under Technological Heterogeneity," IJERPH, MDPI, vol. 19(9), pages 1-20, May.
    8. Wang, Zhaohua & Feng, Chao, 2015. "Sources of production inefficiency and productivity growth in China: A global data envelopment analysis," Energy Economics, Elsevier, vol. 49(C), pages 380-389.
    9. Ma, Shuzhong & Feng, Han, 2013. "Will the decline of efficiency in China's agriculture come to an end? An analysis based on opening and convergence," China Economic Review, Elsevier, vol. 27(C), pages 179-190.
    10. Emrouznejad, Ali & Yang, Guo-liang, 2016. "CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index," Energy Policy, Elsevier, vol. 96(C), pages 397-410.
    11. Vu, Linh Hoang, 2012. "Vietnam’s Agricultural Productivity: A Malmquist Index Approach," MPRA Paper 94800, University Library of Munich, Germany.
    12. Hong Yu & Jianmin Zhang & Ning Xu, 2023. "Does National Independent Innovation Demonstration Zone Construction Help Improve Urban Green Total Factor Productivity? A Policy Assessment from China," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    13. Guihuan Yan & Liming Jiang & Chongqing Xu, 2022. "How Environmental Regulation Affects Industrial Green Total Factor Productivity in China: The Role of Internal and External Channels," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    14. Song, Malin & Zhu, Shuai & Wang, Jianlin & Zhao, Jiajia, 2020. "Share green growth: Regional evaluation of green output performance in China," International Journal of Production Economics, Elsevier, vol. 219(C), pages 152-163.
    15. Ruomei Xu & Yanrui Wu & Chen Chen, 2022. "Agricultural green efficiency and productivity incorporating waste recycling," Australian Economic Papers, Wiley Blackwell, vol. 61(3), pages 635-660, September.
    16. Gong, Binlei, 2020. "Agricultural productivity convergence in China," China Economic Review, Elsevier, vol. 60(C).
    17. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali, 2015. "A new slacks-based measure of Malmquist–Luenberger index in the presence of undesirable outputs," Omega, Elsevier, vol. 51(C), pages 29-37.
    18. Chaofan Chen & Qingxin Lan & Ming Gao & Yawen Sun, 2018. "Green Total Factor Productivity Growth and Its Determinants in China’s Industrial Economy," Sustainability, MDPI, vol. 10(4), pages 1-25, April.
    19. Christian Stetter & Johannes Sauer, 2022. "Greenhouse Gas Emissions and Eco-Performance at Farm Level: A Parametric Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 617-647, March.
    20. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:20:p:3932-:d:276989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.