IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v29y2021i1p217-227.html
   My bibliography  Save this article

Towards sustainable development: How does technological innovation drive the increase in green total factor productivity?

Author

Listed:
  • Meiling Wang
  • Silu Pang
  • Ikram Hmani
  • Ilham Hmani
  • Cunfang Li
  • Zhengxia He

Abstract

This study aims to assess the impact of technological innovation on green total factor productivity (GTFP), within Organization for Economic Cooperation and Development (OECD) countries, by using a panel data over the period 1996–2017. The results show that technological innovation has a significant positive influence on GTFP. The interaction between technological innovation and the economic development level has a significant negative impact on GTFP. However, the interaction between technological innovation and foreign direct investment (FDI) has no significant influence on GTFP. In addition, technological innovation has a positive effect on GTFP when the economic development level is lower than the threshold value. However, technological innovation has an otherwise insignificant promotional effect. Technological innovation has a positive effect on GTFP when FDI is below the threshold value, and it has a slightly significant positive impact when FDI exceeds the threshold value. Therefore, various measures should be taken to guide technological innovation and improve its quality to promote GTFP and realize sustainable development.

Suggested Citation

  • Meiling Wang & Silu Pang & Ikram Hmani & Ilham Hmani & Cunfang Li & Zhengxia He, 2021. "Towards sustainable development: How does technological innovation drive the increase in green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 217-227, January.
  • Handle: RePEc:wly:sustdv:v:29:y:2021:i:1:p:217-227
    DOI: 10.1002/sd.2142
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.2142
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.2142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Malin Song & Hui Li, 2020. "Total factor productivity and the factors of green industry in Shanxi Province, China," Growth and Change, Wiley Blackwell, vol. 51(1), pages 488-504, March.
    2. Hong, Jin & Feng, Bing & Wu, Yanrui & Wang, Liangbing, 2016. "Do government grants promote innovation efficiency in China's high-tech industries?," Technovation, Elsevier, vol. 57, pages 4-13.
    3. Hussinger, Katrin & Pacher, Sebastian, 2019. "Information ambiguity, patents and the market value of innovative assets," Research Policy, Elsevier, vol. 48(3), pages 665-675.
    4. Liu, Zuankuo & Xin, Li, 2019. "Has China's Belt and Road Initiative promoted its green total factor productivity?——Evidence from primary provinces along the route," Energy Policy, Elsevier, vol. 129(C), pages 360-369.
    5. Yingying Zhou & Yaru Xu & Chuanzhe Liu & Zhuoqing Fang & Xinyue Fu & Mingzhao He, 2019. "The Threshold Effect of China’s Financial Development on Green Total Factor Productivity," Sustainability, MDPI, vol. 11(14), pages 1-23, July.
    6. Zhijun Feng & Wei Chen, 2018. "Environmental Regulation, Green Innovation, and Industrial Green Development: An Empirical Analysis Based on the Spatial Durbin Model," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    7. Yanhong Liu & Xinjian Huang & Weiliang Chen, 2019. "Threshold Effect of High-Tech Industrial Scale on Green Development—Evidence from Yangtze River Economic Belt," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    8. Jürgen Bitzer & Holger Görg, 2009. "Foreign Direct Investment, Competition and Industry Performance," The World Economy, Wiley Blackwell, vol. 32(2), pages 221-233, February.
    9. Werner Antweiler & Brian R. Copeland & M. Scott Taylor, 2001. "Is Free Trade Good for the Environment?," American Economic Review, American Economic Association, vol. 91(4), pages 877-908, September.
    10. Tian, Peng & Lin, Boqiang, 2017. "Promoting green productivity growth for China's industrial exports: Evidence from a hybrid input-output model," Energy Policy, Elsevier, vol. 111(C), pages 394-402.
    11. Danish & JianWu Zhang & Syed Tauseef Hassan & Kashif Iqbal, 2020. "Toward achieving environmental sustainability target in Organization for Economic Cooperation and Development countries: The role of real income, research and development, and transport infrastructure," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(1), pages 83-90, January.
    12. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    13. Ghulam Samad & Rabia Manzoor, 2015. "Green Growth: Important Determinants," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 60(02), pages 1-15.
    14. Herui Cui & Haoran Wang & Qiaozhi Zhao, 2019. "Which factors stimulate industrial green total factor productivity growth rate in China? An industrial aspect," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(3), pages 505-518, June.
    15. Noailly, Joëlle & Smeets, Roger, 2015. "Directing technical change from fossil-fuel to renewable energy innovation: An application using firm-level patent data," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 15-37.
    16. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    17. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2015. "Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry," Research Policy, Elsevier, vol. 44(3), pages 669-683.
    18. Xia, Fan & Xu, Jintao, 2020. "Green total factor productivity: A re-examination of quality of growth for provinces in China," China Economic Review, Elsevier, vol. 62(C).
    19. Chaofan Chen & Qingxin Lan & Ming Gao & Yawen Sun, 2018. "Green Total Factor Productivity Growth and Its Determinants in China’s Industrial Economy," Sustainability, MDPI, vol. 10(4), pages 1-25, April.
    20. Dariush Khezrimotlagh & Yao Chen, 2018. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 217-234, Springer.
    21. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    22. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    23. Yigang Wei & Yan Li & Xinjing Liu & Meiyu Wu, 2020. "Sustainable development and green gross domestic product assessments in megacities based on the emergy analysis method—A case study of Wuhan," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(1), pages 294-307, January.
    24. Madsen, Jakob B., 2007. "Technology spillover through trade and TFP convergence: 135 years of evidence for the OECD countries," Journal of International Economics, Elsevier, vol. 72(2), pages 464-480, July.
    25. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    26. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    27. Li, Jian & Strange, Roger & Ning, Lutao & Sutherland, Dylan, 2016. "Outward foreign direct investment and domestic innovation performance: Evidence from China," International Business Review, Elsevier, vol. 25(5), pages 1010-1019.
    28. Huang, Chia-Hui & Hou, Tony Chieh-Tse, 2019. "Innovation, research and development, and firm profitability in Taiwan: Causality and determinants," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 385-394.
    29. Zhu, Xuehong & Chen, Ying & Feng, Chao, 2018. "Green total factor productivity of China's mining and quarrying industry: A global data envelopment analysis," Resources Policy, Elsevier, vol. 57(C), pages 1-9.
    30. Bampatsou, Christina & Halkos, George, 2018. "Dynamics of productivity taking into consideration the impact of energy consumption and environmental degradation," Energy Policy, Elsevier, vol. 120(C), pages 276-283.
    31. Zhang, Chuanguo & Zhou, Xiangxue, 2016. "Does foreign direct investment lead to lower CO2 emissions? Evidence from a regional analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 943-951.
    32. Song, Malin & Du, Juntao & Tan, Kim Hua, 2018. "Impact of fiscal decentralization on green total factor productivity," International Journal of Production Economics, Elsevier, vol. 205(C), pages 359-367.
    33. Feng Tao & Huiqin Zhang & Yi Hu & Andrew A. Duncan, 2017. "Growth of Green Total Factor Productivity and Its Determinants of Cities in China: A Spatial Econometric Approach," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 53(9), pages 2123-2140, September.
    34. Wang, Shaojian & Li, Guangdong & Fang, Chuanglin, 2018. "Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2144-2159.
    35. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    36. Shijin Wang & Guihong Hua & Cunfang Li, 2019. "Urbanization, Air Quality, and the Panel Threshold Effect in China Based on Kernel Density Estimation," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(15), pages 3575-3590, December.
    37. Wu, Ge & Baležentis, Tomas & Sun, Chuanwang & Xu, Shuhua, 2019. "Source control or end-of-pipe control: Mitigating air pollution at the regional level from the perspective of the Total Factor Productivity change decomposition," Energy Policy, Elsevier, vol. 129(C), pages 1227-1239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pang, Si Lu & Liu, Hui & Hua, Gui Hong, 2024. "How does digital finance drive the green economic growth? New discoveries of spatial threshold effect and attenuation possibility boundary," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 561-581.
    2. Lei, Xiao & Shen, Z.Y. & Štreimikienė, Dalia & Baležentis, Tomas & Wang, Guang & Mu, Yunguo, 2024. "Digitalization and sustainable development: Evidence from OECD countries," Applied Energy, Elsevier, vol. 357(C).
    3. Dan Pan & Yi Yu & Fanbin Kong, 2023. "Quantifying the Effectiveness of Environmental Regulations on Green Total Factor Productivity: Evidence Based on China’s Environmental Protection Interview Program," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    4. Anjun Hu & Xianzhu Yuan & Shuangshuang Fan & Shali Wang, 2023. "The Impact and Mechanism of Corporate ESG Construction on the Efficiency of Regional Green Economy: An Empirical Analysis Based on Signal Transmission Theory and Stakeholder Theory," Sustainability, MDPI, vol. 15(17), pages 1-24, September.
    5. Yu Huan & Md. Qamruzzaman, 2022. "Innovation-Led FDI Sustainability: Clarifying the Nexus between Financial Innovation, Technological Innovation, Environmental Innovation, and FDI in the BRIC Nations," Sustainability, MDPI, vol. 14(23), pages 1-26, November.
    6. Ruomeng Zhou & Yunsheng Zhang, 2023. "Measurement of Urban Green Total Factor Productivity and Analysis of Its Temporal and Spatial Evolution in China," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    7. Ju Qiu & Shumei Wang & Meihua Lian, 2023. "Research on the Sustainable Development Path of Regional Economy Based on CO 2 Reduction Policy," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    8. Yuxin Fang & Hongjun Cao & Jihui Sun, 2022. "Impact of Artificial Intelligence on Regional Green Development under China’s Environmental Decentralization System—Based on Spatial Durbin Model and Threshold Effect," IJERPH, MDPI, vol. 19(22), pages 1-27, November.
    9. Ruichao Liu & Xiaoyan Zhang & Pengcheng Wang, 2022. "A Study on the Impact of Fiscal Decentralization on Green Development from the Perspective of Government Environmental Preferences," IJERPH, MDPI, vol. 19(16), pages 1-22, August.
    10. Mengzhen Wang & Xingong Ding & Baekryul Choi, 2023. "FDI or International-Trade-Driven Green Growth of 24 Korean Manufacturing Industries? Evidence from Heterogeneous Panel Based on Non-Causality Test," Sustainability, MDPI, vol. 15(7), pages 1-20, March.
    11. Jing Xiu & Tianyu Zhao & Guangmin Jin & Liang Li & Huaping Sun, 2023. "Non-Linear Nexus of Technological Innovation and Carbon Total Factor Productivity in China," Sustainability, MDPI, vol. 15(18), pages 1-13, September.
    12. Zhang, Shijun & Zhang, Meng & Meng, Shouwei, 2024. "Corporate transaction costs and corporate green total factor productivity," Finance Research Letters, Elsevier, vol. 61(C).
    13. Xiaoli Hao & Xinhui Wang & Haitao Wu & Yu Hao, 2023. "Path to sustainable development: Does digital economy matter in manufacturing green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 360-378, February.
    14. Ayad, Fayssal, 2023. "Mapping the path forward: A prospective model of natural resource depletion and sustainable development," Resources Policy, Elsevier, vol. 85(PA).
    15. Pongsapak Chindasombatcharoen & Pattanaporn Chatjuthamard & Pornsit Jiraporn & Sirimon Treepongkaruna, 2022. "Achieving sustainable development goals through board size and innovation," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 664-677, August.
    16. Fang Yang & Xu Li, 2023. "Corporate Financialization, ESG Performance and Sustainability Development: Evidence from Chinese-Listed Companies," Sustainability, MDPI, vol. 15(4), pages 1-28, February.
    17. Hong Yu & Jianmin Zhang & Ning Xu, 2023. "Does National Independent Innovation Demonstration Zone Construction Help Improve Urban Green Total Factor Productivity? A Policy Assessment from China," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    18. Weijiao Ye & Ziqiang Li, 2023. "The Impact of Food Production Comparative Advantage on Green Total Factor Productivity: The Moderating Role of Environmental Regulation," Agriculture, MDPI, vol. 13(11), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingyan Zhu, 2023. "How Will the Relationship between Technological Innovation and Green Total Factor Productivity Change under the Influence of Service-Oriented Upgrading of Industrial Structure?," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    2. Zhou, Anhua & Li, Jun, 2021. "Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China’s provincial-level data," Energy, Elsevier, vol. 228(C).
    3. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    4. Huaping Zhang & Yue Dong, 2022. "Measurement and Spatial Correlations of Green Total Factor Productivities of Chinese Provinces," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    5. Ruomeng Zhou & Yunsheng Zhang, 2023. "Measurement of Urban Green Total Factor Productivity and Analysis of Its Temporal and Spatial Evolution in China," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    6. Xi Qin & Xiaoling Wang & Yusen Xu & Yawen Wei, 2019. "Exploring Driving Forces of Green Growth: Empirical Analysis on China’s Iron and Steel Industry," Sustainability, MDPI, vol. 11(4), pages 1-11, February.
    7. Liu, Zuankuo & Xin, Li, 2019. "Has China's Belt and Road Initiative promoted its green total factor productivity?——Evidence from primary provinces along the route," Energy Policy, Elsevier, vol. 129(C), pages 360-369.
    8. Yongyi Cheng & Liheng Lu & Tianyuan Shao & Manhong Shen & Laiqun Jin, 2018. "Decomposition Analysis of Factors Affecting Changes in Industrial Wastewater Emission Intensity in China: Based on a SSBM-GMI Approach," IJERPH, MDPI, vol. 15(12), pages 1-23, December.
    9. Xi Zhang & Rui Li & Jinglei Zhang, 2022. "Understanding the Green Total Factor Productivity of Manufacturing Industry in China: Analysis Based on the Super-SBM Model with Undesirable Outputs," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    10. Gao, Yuning & Zhang, Meichen & Zheng, Jinghai, 2021. "Accounting and determinants analysis of China's provincial total factor productivity considering carbon emissions," China Economic Review, Elsevier, vol. 65(C).
    11. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
    12. Lv, Chengchao & Song, Jie & Lee, Chien-Chiang, 2022. "Can digital finance narrow the regional disparities in the quality of economic growth? Evidence from China," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 502-521.
    13. Gao, Kang & Yuan, Yijun, 2022. "Spatiotemporal pattern assessment of China’s industrial green productivity and its spatial drivers: Evidence from city-level data over 2000–2017," Applied Energy, Elsevier, vol. 307(C).
    14. Qingshan Ma & Yuanmeng Zhang & Kexin Yang & Lingyun He, 2021. "Have China’s Pilot Free Trade Zones Improved Green Total Factor Productivity?," IJERPH, MDPI, vol. 18(21), pages 1-20, November.
    15. Pan Rao & Xiaojin Liu & Shubin Zhu & Xiaolan Kang & Xinglei Zhao & Fangting Xie, 2022. "Does the Application of ICTs Improve the Efficiency of Agricultural Carbon Reduction? Evidence from Broadband Adoption in Rural China," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    16. Hong Yu & Jianmin Zhang & Ning Xu, 2023. "Does National Independent Innovation Demonstration Zone Construction Help Improve Urban Green Total Factor Productivity? A Policy Assessment from China," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    17. Dan Pan & Yi Yu & Fanbin Kong, 2023. "Quantifying the Effectiveness of Environmental Regulations on Green Total Factor Productivity: Evidence Based on China’s Environmental Protection Interview Program," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    18. Huang, Hongyun & Mo, Renbian & Chen, Xingquan, 2021. "New patterns in China's regional green development: An interval Malmquist–Luenberger productivity analysis," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 161-173.
    19. Chaofan Chen & Qingxin Lan & Ming Gao & Yawen Sun, 2018. "Green Total Factor Productivity Growth and Its Determinants in China’s Industrial Economy," Sustainability, MDPI, vol. 10(4), pages 1-25, April.
    20. Shuying Wang & Yifei Gao & Hongchang Zhou, 2022. "Research on Green Total Factor Productivity Enhancement Path from the Configurational Perspective—Based on the TOE Theoretical Framework," Sustainability, MDPI, vol. 14(21), pages 1-20, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:29:y:2021:i:1:p:217-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.