IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p4881-d1092335.html
   My bibliography  Save this article

How Will the Relationship between Technological Innovation and Green Total Factor Productivity Change under the Influence of Service-Oriented Upgrading of Industrial Structure?

Author

Listed:
  • Qingyan Zhu

    (College of Economics, Shenzhen University, Shenzhen 518060, China)

Abstract

Technological innovation is closely related to the green total factor productivity (GTFP), which has played an important role in China’s sustainable development goals. However, the relationship between technological innovation and GTFP may change due to the influence of economic factors such as the service-oriented upgrading of industrial structure. This study used a panel dual-threshold regression model to perform an empirical analysis in order to explore this change. We introduced dummy variables to divide the samples into three categories according to the threshold value for group regression. The results show that technological innovation will still promote GTFP under the influence of the service-oriented upgrading of industrial structure. However, this positive influence has a double threshold effect; that is, it led to a nonlinear nexus. The role of technological innovation in promoting GTFP will decrease when the service-oriented upgrading of industrial structures crosses the first and the second thresholds. Additionally, the promotion effect of technological innovation on GTFP in provinces with high levels of service-oriented upgrades of industrial structures is smaller than that in provinces with a low degree of service-oriented upgrading of industrial structures, and even tends to be 0. When the government guides technological innovation to promote the improvement of GTFP, it needs to reasonably consider the composition of industrial structure and coordinate with effective industrial policies.

Suggested Citation

  • Qingyan Zhu, 2023. "How Will the Relationship between Technological Innovation and Green Total Factor Productivity Change under the Influence of Service-Oriented Upgrading of Industrial Structure?," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4881-:d:1092335
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/4881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/4881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vandermerwe, Sandra & Rada, Juan, 1988. "Servitization of business: Adding value by adding services," European Management Journal, Elsevier, vol. 6(4), pages 314-324, December.
    2. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    3. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2015. "Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry," Research Policy, Elsevier, vol. 44(3), pages 669-683.
    4. Dariush Khezrimotlagh & Yao Chen, 2018. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 217-234, Springer.
    5. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    6. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    7. Li, Jian & Strange, Roger & Ning, Lutao & Sutherland, Dylan, 2016. "Outward foreign direct investment and domestic innovation performance: Evidence from China," International Business Review, Elsevier, vol. 25(5), pages 1010-1019.
    8. Alfred Kleinknecht & Kees Van Montfort & Erik Brouwer, 2002. "The Non-Trivial Choice between Innovation Indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 11(2), pages 109-121.
    9. L. Rachel Ngai & Christopher A. Pissarides, 2007. "Structural Change in a Multisector Model of Growth," American Economic Review, American Economic Association, vol. 97(1), pages 429-443, March.
    10. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    11. Chaofan Chen & Qingxin Lan & Ming Gao & Yawen Sun, 2018. "Green Total Factor Productivity Growth and Its Determinants in China’s Industrial Economy," Sustainability, MDPI, vol. 10(4), pages 1-25, April.
    12. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    13. Haoran Yang & Yaoben Lin & Yang Hu & Xueqing Liu & Qun Wu, 2022. "Influence Mechanism of Industrial Agglomeration and Technological Innovation on Land Granting on Green Total Factor Productivity," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    14. Antonelli, Cristiano, 2006. "Localized technological change and factor markets: constraints and inducements to innovation," Structural Change and Economic Dynamics, Elsevier, vol. 17(2), pages 224-247, June.
    15. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    16. Peneder, Michael, 2003. "Industrial structure and aggregate growth," Structural Change and Economic Dynamics, Elsevier, vol. 14(4), pages 427-448, December.
    17. Po-Chi Chen & Ming-Miin Yu, 2014. "Total factor productivity growth and directions of technical change bias: evidence from 99 OECD and non-OECD countries," Annals of Operations Research, Springer, vol. 214(1), pages 143-165, March.
    18. Weixiang Zhao & Yankun Xu, 2022. "Public Expenditure and Green Total Factor Productivity: Evidence from Chinese Prefecture-Level Cities," IJERPH, MDPI, vol. 19(9), pages 1-27, May.
    19. Hong, Jin & Feng, Bing & Wu, Yanrui & Wang, Liangbing, 2016. "Do government grants promote innovation efficiency in China's high-tech industries?," Technovation, Elsevier, vol. 57, pages 4-13.
    20. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    21. Runde Gu & Chunfa Li & Dongdong Li & Yangyang Yang & Shan Gu, 2022. "The Impact of Rationalization and Upgrading of Industrial Structure on Carbon Emissions in the Beijing-Tianjin-Hebei Urban Agglomeration," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    22. Ghulam Samad & Rabia Manzoor, 2015. "Green Growth: Important Determinants," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 60(02), pages 1-15.
    23. Chiou, Tzu-Yun & Chan, Hing Kai & Lettice, Fiona & Chung, Sai Ho, 2011. "The influence of greening the suppliers and green innovation on environmental performance and competitive advantage in Taiwan," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 822-836.
    24. Xia, Fan & Xu, Jintao, 2020. "Green total factor productivity: A re-examination of quality of growth for provinces in China," China Economic Review, Elsevier, vol. 62(C).
    25. Pasche, Markus, 2002. "Technical progress, structural change, and the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 42(3), pages 381-389, September.
    26. Lindmark, Magnus, 2002. "An EKC-pattern in historical perspective: carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870-1997," Ecological Economics, Elsevier, vol. 42(1-2), pages 333-347, August.
    27. Die Li & Sumin Hu, 2021. "How Does Technological Innovation Mediate the Relationship between Environmental Regulation and High-Quality Economic Development? Empirical Evidence from China," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    28. Zhu, Xuehong & Chen, Ying & Feng, Chao, 2018. "Green total factor productivity of China's mining and quarrying industry: A global data envelopment analysis," Resources Policy, Elsevier, vol. 57(C), pages 1-9.
    29. Azadegan, Arash & Wagner, Stephan M., 2011. "Industrial upgrading, exploitative innovations and explorative innovations," International Journal of Production Economics, Elsevier, vol. 130(1), pages 54-65, March.
    30. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    31. Wu, Ge & Baležentis, Tomas & Sun, Chuanwang & Xu, Shuhua, 2019. "Source control or end-of-pipe control: Mitigating air pollution at the regional level from the perspective of the Total Factor Productivity change decomposition," Energy Policy, Elsevier, vol. 129(C), pages 1227-1239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siqing You & Chaoyu Zhang & Han Zhao & Hongli Zhou & Zican Li & Jiayi Xu & Yan Meng, 2023. "Trend Analysis of the Impact of Ecological Governance on Industrial Structural Upgrading under the Dual Carbon Target," Sustainability, MDPI, vol. 15(15), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meiling Wang & Silu Pang & Ikram Hmani & Ilham Hmani & Cunfang Li & Zhengxia He, 2021. "Towards sustainable development: How does technological innovation drive the increase in green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 217-227, January.
    2. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    3. Ruomeng Zhou & Yunsheng Zhang, 2023. "Measurement of Urban Green Total Factor Productivity and Analysis of Its Temporal and Spatial Evolution in China," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    4. Xi Zhang & Rui Li & Jinglei Zhang, 2022. "Understanding the Green Total Factor Productivity of Manufacturing Industry in China: Analysis Based on the Super-SBM Model with Undesirable Outputs," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    5. Gao, Yuning & Zhang, Meichen & Zheng, Jinghai, 2021. "Accounting and determinants analysis of China's provincial total factor productivity considering carbon emissions," China Economic Review, Elsevier, vol. 65(C).
    6. Chaofan Chen & Qingxin Lan & Ming Gao & Yawen Sun, 2018. "Green Total Factor Productivity Growth and Its Determinants in China’s Industrial Economy," Sustainability, MDPI, vol. 10(4), pages 1-25, April.
    7. Xi Qin & Xiaoling Wang & Yusen Xu & Yawen Wei, 2019. "Exploring Driving Forces of Green Growth: Empirical Analysis on China’s Iron and Steel Industry," Sustainability, MDPI, vol. 11(4), pages 1-11, February.
    8. Liu, Zuankuo & Xin, Li, 2019. "Has China's Belt and Road Initiative promoted its green total factor productivity?——Evidence from primary provinces along the route," Energy Policy, Elsevier, vol. 129(C), pages 360-369.
    9. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    10. Yongyi Cheng & Liheng Lu & Tianyuan Shao & Manhong Shen & Laiqun Jin, 2018. "Decomposition Analysis of Factors Affecting Changes in Industrial Wastewater Emission Intensity in China: Based on a SSBM-GMI Approach," IJERPH, MDPI, vol. 15(12), pages 1-23, December.
    11. Wang, Zhaohua & Feng, Chao, 2015. "Sources of production inefficiency and productivity growth in China: A global data envelopment analysis," Energy Economics, Elsevier, vol. 49(C), pages 380-389.
    12. Emrouznejad, Ali & Yang, Guo-liang, 2016. "CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index," Energy Policy, Elsevier, vol. 96(C), pages 397-410.
    13. Wei Qian & Yongsheng Wang, 2022. "How Do Rising Labor Costs Affect Green Total Factor Productivity? Based on the Industrial Intelligence Perspective," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    14. Cheng, Zhonghua & Jin, Wei, 2022. "Agglomeration economy and the growth of green total-factor productivity in Chinese Industry," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    15. Shuying Wang & Yifei Gao & Hongchang Zhou, 2022. "Research on Green Total Factor Productivity Enhancement Path from the Configurational Perspective—Based on the TOE Theoretical Framework," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    16. Weixiang Zhao & Yankun Xu, 2022. "Public Expenditure and Green Total Factor Productivity: Evidence from Chinese Prefecture-Level Cities," IJERPH, MDPI, vol. 19(9), pages 1-27, May.
    17. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    18. Lv, Chengchao & Song, Jie & Lee, Chien-Chiang, 2022. "Can digital finance narrow the regional disparities in the quality of economic growth? Evidence from China," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 502-521.
    19. Zhou, Anhua & Li, Jun, 2021. "Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China’s provincial-level data," Energy, Elsevier, vol. 228(C).
    20. Joshi, Shruti & Nath, Siddhartha & Ranjan, Abhishek, 2023. "Green Total Factor Productivity for India: Some Recent Estimates and Policy Directions," MPRA Paper 117717, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4881-:d:1092335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.